Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 134(4): 668-78, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18724939

RESUMO

Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have developed linkage-specific antibodies that recognize polyubiquitin chains joined through lysine 63 (K63) or 48 (K48). A cocrystal structure of an anti-K63 linkage Fab bound to K63-linked diubiquitin provides insight into the molecular basis for specificity. We use these antibodies to demonstrate that RIP1, which is essential for tumor necrosis factor-induced NF-kappaB activation, and IRAK1, which participates in signaling by interleukin-1beta and Toll-like receptors, both undergo polyubiquitin editing in stimulated cells. Both kinase adaptors initially acquire K63-linked polyubiquitin, while at later times K48-linked polyubiquitin targets them for proteasomal degradation. Polyubiquitin editing may therefore be a general mechanism for attenuating innate immune signaling.


Assuntos
Anticorpos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Proteínas Formadoras de Poros Nucleares/química , Biblioteca de Peptídeos , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae , Schizosaccharomyces , Ubiquitina/química , Ubiquitinação
2.
J Biol Chem ; 294(4): 1396-1409, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30523157

RESUMO

Dysregulation of the ErbB family of receptor tyrosine kinases is involved in the progression of many cancers. Antibodies targeting the dimerization domains of family members EGFR and HER2 are approved cancer therapeutics, but efficacy is restricted to a subset of tumors and resistance often develops in response to treatment. A third family member, HER3, heterodimerizes with both EGFR and HER2 and has also been implicated in cancer. Consequently, there is strong interest in developing antibodies that target HER3, but to date, no therapeutics have been approved. To aid the development of anti-HER3 antibodies as cancer therapeutics, we combined antibody engineering and functional genomics screens to identify putative mechanisms of resistance or synthetic lethality with antibody-mediated anti-proliferative effects. We developed a synthetic antibody called IgG 95, which binds to HER3 and promotes ubiquitination, internalization, and receptor down-regulation. Using an shRNA library targeting enzymes in the ubiquitin proteasome system, we screened for genes that effect response to IgG 95 and uncovered the E3 ubiquitin ligase RNF41 as a driver of IgG 95 anti-proliferative activity. RNF41 has been shown previously to regulate HER3 levels under normal conditions and we now show that it is also responsible for down-regulation of HER3 upon treatment with IgG 95. Moreover, our findings suggest that down-regulation of RNF41 itself may be a mechanism for acquired resistance to treatment with IgG 95 and perhaps other anti-HER3 antibodies. Our work deepens our understanding of HER3 signaling by uncovering the mechanistic basis for the anti-proliferative effects of potential anti-HER3 antibody therapeutics.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/prevenção & controle , Proliferação de Células , Neoplasias Pancreáticas/prevenção & controle , Receptor ErbB-3/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptor ErbB-3/antagonistas & inibidores , Homologia de Sequência , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Med Sci (Paris) ; 30(4): 405-7, 2014 Apr.
Artigo em Francês | MEDLINE | ID: mdl-24801035

RESUMO

Exosomes are small vesicles derived from endosomes and carrying several constituants of the cell; if captured by other neighbour cell types, they can trigger novel functions in these cells. We illustrate here (through recently published results) how exosomes released by activated tumor-associated fibroblasts are able to induce in cancer cells a signalling pathway key to the acquisition of motility and hence metastatic property.


Assuntos
Exossomos , Neoplasias/genética , Neoplasias/patologia , Células Estromais , Animais , Humanos
4.
Proc Natl Acad Sci U S A ; 106(16): 6644-9, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19346472

RESUMO

KcsA is a proton-activated, voltage-modulated K(+) channel that has served as the archetype pore domain in the Kv channel superfamily. Here, we have used synthetic antigen-binding fragments (Fabs) as crystallographic chaperones to determine the structure of full-length KcsA at 3.8 A, as well as that of its isolated C-terminal domain at 2.6 A. The structure of the full-length KcsA-Fab complex reveals a well-defined, 4-helix bundle that projects approximately 70 A toward the cytoplasm. This bundle promotes a approximately 15 degree bending in the inner bundle gate, tightening its diameter and shifting the narrowest point 2 turns of helix below. Functional analysis of the full-length KcsA-Fab complex suggests that the C-terminal bundle remains whole during gating. We suggest that this structure likely represents the physiologically relevant closed conformation of KcsA.


Assuntos
Proteínas de Bactérias/química , Canais de Potássio/química , Streptomyces lividans/química , Sequência de Aminoácidos , Cristalografia por Raios X , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
5.
Proc Natl Acad Sci U S A ; 105(1): 82-7, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162543

RESUMO

Antibodies that bind protein antigens are indispensable in biochemical research and modern medicine. However, knowledge of RNA-binding antibodies and their application in the ever-growing RNA field is lacking. Here we have developed a robust approach using a synthetic phage-display library to select specific antigen-binding fragments (Fabs) targeting a large functional RNA. We have solved the crystal structure of the first Fab-RNA complex at 1.95 A. Capability in phasing and crystal contact formation suggests that the Fab provides a potentially valuable crystal chaperone for RNA. The crystal structure reveals that the Fab achieves specific RNA binding on a shallow surface with complementarity-determining region (CDR) sequence diversity, length variability, and main-chain conformational plasticity. The Fab-RNA interface also differs significantly from Fab-protein interfaces in amino acid composition and light-chain participation. These findings yield valuable insights for engineering of Fabs as RNA-binding modules and facilitate further development of Fabs as possible therapeutic drugs and biochemical tools to explore RNA biology.


Assuntos
Bioquímica/métodos , RNA/química , Sequência de Aminoácidos , Animais , Anticorpos/química , Antígenos/química , Sequência de Bases , Biologia Computacional/métodos , Cristalização , Cristalografia por Raios X/métodos , Cinética , Magnésio/química , Conformação Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biblioteca de Peptídeos , Homologia de Sequência de Aminoácidos , Tetrahymena/metabolismo
6.
J Mol Biol ; 433(13): 166983, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33839165

RESUMO

Recombinant antibodies (Abs) against the SARS-CoV-2 virus hold promise for treatment of COVID-19 and high sensitivity and specific diagnostic assays. Here, we report engineering principles and realization of a Protein-fragment Complementation Assay (PCA) detector of SARS-CoV-2 antigen by coupling two Abs to complementary N- and C-terminal fragments of the reporter enzyme Gaussia luciferase (Gluc). Both Abs display comparably high affinities for distinct epitopes of viral Spike (S)-protein trimers. Gluc activity is reconstituted when the Abs are simultaneously bound to S-protein bringing the Ab-fused N- and C-terminal fragments close enough together (8 nm) to fold. We thus achieve high specificity both by requirement of simultaneous binding of the two Abs to the S-protein and also, in a steric configuration in which the two Gluc complementary fragments can fold and thus reconstitute catalytic activity. Gluc activity can also be reconstituted with virus-like particles that express surface S-protein with detectable signal over background within 5 min of incubation. Design principles presented here can be readily applied to develop reporters to virtually any protein with sufficient available structural details. Thus, our results present a general framework to develop reporter assays for COVID-19, and the strategy can be readily deployed in response to existing and future pathogenic threats and other diseases.


Assuntos
Anticorpos Antivirais/química , Antígenos Virais/imunologia , COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/isolamento & purificação , Epitopos/imunologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Luciferases , Medições Luminescentes/métodos , Engenharia de Proteínas , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Commun Biol ; 4(1): 475, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846513

RESUMO

COVID-19 is a respiratory illness caused by a novel coronavirus called SARS-CoV-2. The viral spike (S) protein engages the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells with ~10-15-fold higher affinity compared to SARS-CoV S-protein, making it highly infectious. Here, we assessed if ACE2 polymorphisms can alter host susceptibility to SARS-CoV-2 by affecting this interaction. We analyzed over 290,000 samples representing >400 population groups from public genomic datasets and identified multiple ACE2 protein-altering variants. Using reported structural data, we identified natural ACE2 variants that could potentially affect virus-host interaction and thereby alter host susceptibility. These include variants S19P, I21V, E23K, K26R, T27A, N64K, T92I, Q102P and H378R that were predicted to increase susceptibility, while variants K31R, N33I, H34R, E35K, E37K, D38V, Y50F, N51S, M62V, K68E, F72V, Y83H, G326E, G352V, D355N, Q388L and D509Y were predicted to be protective variants that show decreased binding to S-protein. Using biochemical assays, we confirmed that K31R and E37K had decreased affinity, and K26R and T92I variants showed increased affinity for S-protein when compared to wildtype ACE2. Consistent with this, soluble ACE2 K26R and T92I were more effective in blocking entry of S-protein pseudotyped virus suggesting that ACE2 variants can modulate susceptibility to SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto/genética , Polimorfismo Genético , Receptores Virais/genética , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
8.
Biomed Opt Express ; 11(11): 6154-6167, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282481

RESUMO

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world. Differential diagnosis is a crucial step for the management of the disease and its epidemiology. Point-of-care testing of blood-borne dengue biomarkers provides an advantageous approach in many health care settings, and the ability to follow more than one biomarker at once could significantly improve the management of the disease. Bead-based multiplex technologies (suspension array) can measure multiple biomarker targets simultaneously by using recognition molecules immobilized on microsphere beads. The overarching objective of our work is to develop a portable detection device for the simultaneous measurement of multiple biomarkers important in dengue diagnosis, monitoring and treatment. Here, we present a bead-based assay for the detection of one of the four serotypes of dengue virus non-structural protein (DENV-NS1) as well as its cognate human IgG. In this system, the fluorescent microspheres containing the classification fluorophore and detection fluorophore are imaged through a microfluidic chip using an infinity-corrected microscope system. Calibration curves were plotted for median fluorescence intensity against known concentrations of DENV-NS1 protein and anti-NS1 human IgG. The limit of quantitation was 7.8 ng/mL and 15.6 ng/mL, respectively. The results of this study demonstrate the feasibility of the multiplex detection of dengue biomarkers and present its analytical performance parameters. The proposed imaging device holds potential for point-of-care testing of biomarkers on a highly portable system, and it may facilitate the diagnosis and prevention of dengue as well as other infectious diseases.

9.
J Mol Biol ; 373(4): 924-40, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17825836

RESUMO

We have previously established a minimalist approach to antibody engineering by using a phage-displayed framework to support complementarity determining region (CDR) diversity restricted to a binary code of tyrosine and serine. Here, we systematically augmented the original binary library with additional levels of diversity and examined the effects. The diversity of the simplest library, in which only heavy chain CDR positions were randomized by the binary code, was expanded in a stepwise manner by adding diversity to the light chain, by diversifying non-paratope residues that may influence CDR conformations, and by adding additional chemical diversity to CDR-H3. The additional diversity incrementally improved the affinities of antibodies raised against human vascular endoethelial growth factor and the structure of an antibody-antigen complex showed that tyrosine side-chains are sufficient to mediate most of the interactions with antigen, but a glycine residue in CDR-H3 was critical for providing a conformation suitable for high-affinity binding. Using new high-throughput procedures and the most complex library, we produced multiple high-affinity antibodies with dissociation constants in the single-digit nanomolar range against a wide variety of protein antigens. Thus, this fully synthetic, minimalist library has essentially recapitulated the capacity of the natural immune system to generate high-affinity antibodies. Libraries of this type should be highly useful for proteomic applications, as they minimize inherent complexities of natural antibodies that have hindered the establishment of high-throughput procedures. Furthermore, analysis of a large number of antibodies derived from these well-defined and simplistic libraries allowed us to uncover statistically significant trends in CDR sequences, which provide valuable insights into antibody library design and into factors governing protein-protein interactions.


Assuntos
Anticorpos/química , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fator A de Crescimento do Endotélio Vascular/química
10.
J Mol Biol ; 357(1): 100-14, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16413576

RESUMO

The antigen-binding fragment Fab-YADS2 recognizes vascular endothelial growth factor (VEGF) and was derived from a library with chemical diversity restricted to only four amino acids (Tyr, Ser, Ala and Asp). The structure of the Fab:antigen complex revealed that the structural paratope is dominated by Tyr side-chains. Isothermal titration calorimetry and cell-based assays show that restricted chemical diversity does not limit the affinity or specificity of Fab-YADS2, which behaves in a manner comparable to natural antibodies. Mutagenesis experiments reveal that the functional paratope is dominated by Tyr, which represents 11 of the 15 functionally important residues. However, mutagenesis experiments also indicate that substitution of any of these tyrosine residues by Phe does not significantly affect binding to VEGF. Furthermore, saturation mutagenesis shows that replacement of three functionally important tyrosine residues by combinations of other hydrophobic residues is not only tolerated, but can actually improve affinity. The results support a model for naïve antigen recognition in which large Tyr side-chains establish binding contacts with antigen, and small Ser and Ala side-chains serve as auxiliaries that help to position Tyr in favorable binding conformations. While Tyr may not be optimal for any particular antigen contact, it is nonetheless capable of mediating favorable interactions with a diverse array of surfaces. Furthermore, the side-chain hydroxyl group makes Tyr significantly more hydrophilic than Phe and other hydrophobic amino acids. Increased hydrophilicity may reduce non-specific binding in the unbound state, and this may be critical for a naïve repertoire that is exposed to a diverse range of potential antigenic surfaces. The results show that the chemical nature of Tyr endows the amino acid with a privileged role in antigen recognition, and this likely explains the high abundance of Tyr in natural antigen-binding sites.


Assuntos
Aminoácidos/genética , Anticorpos/metabolismo , Sítios de Ligação de Anticorpos/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Fatores Imunológicos/genética , Tirosina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/genética , Sítios de Ligação , Sítios de Ligação de Anticorpos/imunologia , Calorimetria , Linhagem Celular , Técnicas de Química Combinatória , Epitopos , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fatores Imunológicos/imunologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Termodinâmica , Tirosina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
J Mol Biol ; 348(5): 1153-62, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15854651

RESUMO

Functional antibodies were obtained from a library of antigen-binding sites generated by a binary code restricted to tyrosine and serine. An antibody raised against human vascular endothelial growth factor recognized the antigen with high affinity (K(D)=60 nM) and high specificity in cell-based assays. The crystal structure of another antigen binding fragment in complex with its antigen (human death receptor DR5) revealed the structural basis for this minimalist mode of molecular recognition. Natural antigen-binding sites are enriched for tyrosine and serine, and we show that these amino acid residues are intrinsically well suited for molecular recognition. Furthermore, these results demonstrate that molecular recognition can evolve from even the simplest chemical diversity.


Assuntos
Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Fragmentos Fab das Imunoglobulinas/química , Receptores do Fator de Necrose Tumoral/imunologia , Serina/imunologia , Tirosina/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Sequência de Aminoácidos , Anticorpos/química , Anticorpos/imunologia , Antígenos/imunologia , Cristalografia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Conformação Molecular , Dados de Sequência Molecular , Biblioteca de Peptídeos , Conformação Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Serina/química , Tirosina/química
12.
J Mol Biol ; 338(2): 299-310, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15066433

RESUMO

A structure-based approach was used to design libraries of synthetic heavy chain complementarity determining regions (CDRs). The CDR libraries were displayed as either monovalent or bivalent single-chain variable fragments (scFvs) with a single heavy chain variable domain scaffold and a fixed light chain variable domain. Using the structure of a parent antibody as a guide, we restricted library diversity to CDR positions with significant exposure to solvent. We introduced diversity with tailored degenerate codons that ideally only encoded for amino acids commonly observed in natural antibody CDRs. With these design principles, we reasoned that we would produce libraries of diverse solvent-exposed surfaces displayed on stable scaffolds with minimal structural perturbations. The libraries were sorted against a panel of proteins and yielded multiple unique binding clones against all six antigens tested. The bivalent library yielded numerous unique sequences, while the monovalent library yielded fewer unique clones. Selected scFvs were converted to the Fab format, and the purified Fab proteins retained high affinity for antigen. The results support the view that synthetic heavy chain diversity alone may be sufficient for the generation of high-affinity antibodies from phage-displayed libraries; thus, it may be possible to dispense with the light chain altogether, as is the case in natural camelid immunoglobulins.


Assuntos
Anticorpos/química , Anticorpos/genética , Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/química , Biblioteca de Peptídeos , Conformação Proteica , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Afinidade de Anticorpos , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Dev Cell ; 18(4): 579-91, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20412773

RESUMO

Several developmental pathways contribute to processes that regulate tissue growth and organ size. The Hippo pathway has emerged as one such critical regulator. However, how Hippo signaling is integrated with other pathways to coordinate these processes remains unclear. Here, we show that the Hippo pathway restricts Wnt/beta-Catenin signaling by promoting an interaction between TAZ and DVL in the cytoplasm. TAZ inhibits the CK1delta/epsilon-mediated phosphorylation of DVL, thereby inhibiting Wnt/beta-Catenin signaling. Abrogation of TAZ levels or Hippo signaling enhances Wnt3A-stimulated DVL phosphorylation, nuclear beta-Catenin, and Wnt target gene expression. Mice lacking Taz develop polycystic kidneys with enhanced cytoplasmic and nuclear beta-Catenin. Moreover, in Drosophila, Hippo signaling modulates Wg target gene expression. These results uncover a cytoplasmic function of TAZ in regulating Wnt signaling and highlight the role of the Hippo pathway in coordinating morphogenetic signaling with growth control.


Assuntos
Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Fosforilação , Transdução de Sinais , Proteína Wnt1/metabolismo , Proteína Wnt3 , Proteína Wnt3A
14.
J Mol Biol ; 377(5): 1518-28, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18336836

RESUMO

Synthetic antibody libraries with restricted chemical diversity were used to explore the intrinsic contributions of four amino acids (Tyr, Ser, Gly and Arg) to the affinity and specificity of antigen recognition. There was no correlation between nonspecific binding and the content of Tyr, Ser or Gly in the antigen-binding site, and in fact, the most specific antibodies were those with the highest Tyr content. In contrast, Arg content was clearly correlated with increased nonspecific binding. We combined Tyr, Ser and Gly to generate highly specific synthetic antibodies with affinities in the subnanomolar range, showing that the high abundance of Tyr, Ser and Gly in natural antibody germ line sequences reflects the intrinsic capacity of these residues to work together to mediate antigen recognition. Despite being a major functional contributor to co-evolved protein-protein interfaces, we find that Arg does not contribute generally to the affinity of naïve antigen-binding sites and is detrimental to specificity. Again, this is consistent with studies of natural antibodies, which have shown that nonspecific, self-reactive antibodies are rich in Arg and other positively charged residues. Our findings suggest that the principles governing naïve molecular recognition differ from those governing co-evolved interactions. Analogous studies can be designed to explore the roles of the other amino acids in molecular recognition. Results of such studies should illuminate the basic principles underlying natural protein-protein interactions and should aid the design of synthetic binding proteins with functions beyond the scope of natural proteins.


Assuntos
Anticorpos/imunologia , Arginina/imunologia , Glicina/imunologia , Serina/química , Serina/imunologia , Tirosina/imunologia , Sequência de Aminoácidos , Anticorpos/química , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Arginina/química , Sítios de Ligação de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glicina/química , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Tirosina/química
15.
Proc Natl Acad Sci U S A ; 101(34): 12467-72, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15306681

RESUMO

Antigen-binding fragments (Fabs) with synthetic antigen-binding sites were isolated from phage-displayed libraries with restricted complementarity-determining region (CDR) diversity. Libraries were constructed such that solvent-accessible CDR positions were randomized with a degenerate codon that encoded for only four amino acids (tyrosine, alanine, aspartate, and serine). Nonetheless, high-affinity Fabs (K(d) = 2-10 nM) were isolated against human vascular endothelial growth factor (hVEGF), and the crystal structures were determined for two distinct Fab-hVEGF complexes. The structures revealed that antigen recognition was mediated primarily by tyrosine side chains, which accounted for 71% of the Fab surface area that became buried upon binding to hVEGF. In contrast, aspartate residues within the CDRs were almost entirely excluded from the binding interface. Alanine and serine residues did not make many direct contacts with antigen, but they allowed for space and conformational flexibility and thus played an auxiliary role in facilitating productive contacts between tyrosine and antigen. Tyrosine side chains were capable of mediating most of the contacts necessary for high-affinity antigen recognition, and, thus, it seems likely that the overabundance of tyrosine in natural antigen-binding sites is a consequence of the side chain being particularly well suited for making productive contacts with antigen. The findings shed light on the basic principles governing the evolution of natural immune repertoires and should also aid the development of improved synthetic antibody libraries.


Assuntos
Antígenos/metabolismo , Códon , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Tirosina/metabolismo , Sequência de Aminoácidos , Antígenos/imunologia , Sítios de Ligação , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade , Cristalografia por Raios X , Epitopos , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Modelos Moleculares , Dados de Sequência Molecular , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Tirosina/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA