Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098265

RESUMO

The transient receptor potential melastatin 4 (TRPM4) channel contributes extensively to cardiac electrical activity, especially cardiomyocyte action potential formation. Mechanical stretch can induce changes in heart rate and rhythm, and the mechanosensitive channel Piezo1 is expressed in many cell types within the myocardium. Our previous study showed that TRPM4 and Piezo1 are closely co-localized in the t-tubules of ventricular cardiomyocytes and contribute to the Ca2+ -dependent signalling cascade that underlies hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. In the present study, we employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate whether Piezo1-TRPM4 coupling can affect action potential properties. We used the small molecule Piezo1 agonist, Yoda1, as a surrogate for mechanical stretch to activate Piezo1 and detected the action potential changes in HL-1 cells using FluoVolt, a fluorescent voltage sensitive dye. Our results demonstrate that Yoda1-induced activation of Piezo1 changes the action potential frequency in HL-1 cells. This change in action potential frequency is reduced by Piezo1 knockdown using small intefering RNA. Importantly knockdown or pharmacological inhibition of TRPM4 significantly affected the degree to which Yoda1-evoked Piezo1 activation influenced action potential frequency. Thus, the present study provides in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+ -activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction. KEY POINTS: The transient receptor potential melastatin 4 (TRPM4) and Piezo1 channels have been confirmed to contribute to the Ca2+ -dependent signalling cascade that underlies cardiac hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. We employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate the effect of Piezo1-TRPM4 coupling on cardiac electrical properties. The results show that both pharmacological and genetic inhibition of TRPM4 significantly affected the degree to which Piezo1 activation influenced action potential frequency in HL-1 cells. Our findings provide in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+ -activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction in various (patho)physiological processes.

2.
Development ; 146(4)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787001

RESUMO

Congenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations. In addition, studies have identified different environmental stressors that promote CHD, but the additive effect of genetic susceptibility and environmental factors is poorly understood. In this context, we have investigated the effects of short-term gestational hypoxia on mouse embryos genetically predisposed to heart defects. Exposure of mouse embryos heterozygous for Tbx1 or Fgfr1/Fgfr2 to hypoxia in utero increased the incidence and severity of heart defects while Nkx2-5+/- embryos died within 2 days of hypoxic exposure. We identified the molecular consequences of the interaction between Nkx2-5 and short-term gestational hypoxia, which suggest that reduced Nkx2-5 expression and a prolonged hypoxia-inducible factor 1α response together precipitate embryo death. Our study provides insight into the causes of embryo loss and variable penetrance of monogenic CHD, and raises the possibility that cases of foetal death and CHD in humans could be caused by similar gene-environment interactions.


Assuntos
Interação Gene-Ambiente , Cardiopatias Congênitas/genética , Coração/embriologia , Proteína Homeobox Nkx-2.5/genética , Proteínas de Homeodomínio/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Apoptose , Proliferação de Células , Embrião de Mamíferos/metabolismo , Feminino , Predisposição Genética para Doença , Coração/diagnóstico por imagem , Heterozigoto , Proteína Homeobox Nkx-2.5/fisiologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigênio/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas com Domínio T/genética , Fatores de Tempo
3.
Am J Physiol Heart Circ Physiol ; 321(4): H807-H817, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533400

RESUMO

Multiple mouse lines lacking the orphan G protein-coupled receptor, GPR37L1, have elicited disparate cardiovascular phenotypes. The first Gpr37l1 knockout mice study to be published reported a marked elevation in systolic blood pressure (SBP; ∼60 mmHg), revealing a potential therapeutic opportunity. The phenotype differed from our own independently generated knockout line, where male mice exhibited equivalent baseline blood pressure to wild type. Here, we attempted to reproduce the first study by characterizing the cardiovascular phenotype of both the original knockout and transgenic lines alongside a C57BL/6J control line, using the same method of blood pressure measurement. The present study supports the findings from our independently developed Gpr37l1 knockout line, finding that SBP and diastolic blood pressure (DBP) are not different in the original Gpr37l1 knockout male mice (SBP: 130.9 ± 5.3 mmHg; DBP: 90.7 ± 3.0 mmHg) compared with C57BL/6J mice (SBP: 123.1 ± 4.1 mmHg; DBP: 87.0 ± 2.7 mmHg). Instead, we attribute the apparent hypertension of the knockout line originally described to comparison with a seemingly hypotensive transgenic line (SBP 103.7 ± 5.0 mmHg; DBP 71.9 ± 3.7 mmHg). Additionally, we quantified myocardial GPR37L1 transcript in humans, which was suggested to be downregulated in cardiovascular disease. We found that GPR37L1 has very low native transcript levels in human myocardium and that expression is not different in tissue samples from patients with heart failure compared with sex-matched healthy control tissue. These findings indicate that cardiac GPR37L1 expression is unlikely to contribute to the pathophysiology of human heart failure.NEW & NOTEWORTHY This study characterizes systolic blood pressure (SBP) in a Gpr37l1 knockout mouse line, which was previously reported to have ∼60 mmHg higher SBP compared with a transgenic line. We observed only a ∼27 mmHg SBP difference between the lines. However, when compared with C57BL/6J mice, knockout mice showed no difference in SBP. We also investigated GPR37L1 mRNA abundance in human hearts and observed no difference between healthy and failing heart samples.


Assuntos
Pressão Sanguínea , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Feminino , Genótipo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Receptores Acoplados a Proteínas G/genética , Especificidade da Espécie
4.
Circ J ; 82(3): 620-628, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29415914

RESUMO

Echocardiography is an invaluable tool for characterizing cardiac structure and function in vivo. Technological advances in high-frequency ultrasound over the past 3 decades have increased spatial and temporal resolution, and facilitated many important clinical and basic science discoveries. Successful reverse translation of established echocardiographic techniques, including M-mode, B-mode, color Doppler, pulsed-wave Doppler, tissue Doppler and, most recently, myocardial deformation imaging, from clinical cardiology into the basic science laboratory has enabled researchers to achieve a deeper understanding of myocardial phenotypes in health and disease. With high-frequency echocardiography, detailed evaluation of ventricular systolic function in a range of small animal models is now possible. Furthermore, improvements in frame rate and the advent of diastolic strain rate imaging, when coupled with the use of select pulsed-wave Doppler parameters, such as isovolumic relaxation time and E wave deceleration, have enabled nuanced interpretation of ventricular diastolic function. Comparing pulsed-wave Doppler indices of atrioventricular inflow during early and late diastole with parameters that describe the simultaneous myocardial deformation (e.g., tissue Doppler é and á, global longitudinal strain rate and global longitudinal velocity) may yield additional insights related to myocardial compliance. This review will provide a historical perspective of the development of high-frequency echocardiography and consider how ongoing innovation will help future-proof this important imaging modality for 21st century translational research.


Assuntos
Ecocardiografia/tendências , Animais , Diagnóstico por Imagem/métodos , Ecocardiografia/instrumentação , Ecocardiografia/métodos , Ecocardiografia Doppler de Pulso , Coração/diagnóstico por imagem , Humanos , Camundongos , Pesquisa/instrumentação , Pesquisa/tendências , Peixe-Zebra
5.
Front Cardiovasc Med ; 10: 1153814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324638

RESUMO

Background: Moderate severity aortic stenosis (AS) is poorly understood, is associated with subclinical myocardial dysfunction, and can lead to adverse outcome rates that are comparable to severe AS. Factors associated with progressive myocardial dysfunction in moderate AS are not well described. Artificial neural networks (ANNs) can identify patterns, inform clinical risk, and identify features of importance in clinical datasets. Methods: We conducted ANN analyses on longitudinal echocardiographic data collected from 66 individuals with moderate AS who underwent serial echocardiography at our institution. Image phenotyping involved left ventricular global longitudinal strain (GLS) and valve stenosis severity (including energetics) analysis. ANNs were constructed using two multilayer perceptron models. The first model was developed to predict change in GLS from baseline echocardiography alone and the second to predict change in GLS using data from baseline and serial echocardiography. ANNs used a single hidden layer architecture and a 70%:30% training/testing split. Results: Over a median follow-up interval of 1.3 years, change in GLS (≤ or >median change) could be predicted with accuracy rates of 95% in training and 93% in testing using ANN with inputs from baseline echocardiogram data alone (AUC: 0.997). The four most important predictive baseline features (reported as normalized % importance relative to most important feature) were peak gradient (100%), energy loss (93%), GLS (80%), and DI < 0.25 (50%). When a further model was run including inputs from both baseline and serial echocardiography (AUC 0.844), the top four features of importance were change in dimensionless index between index and follow-up studies (100%), baseline peak gradient (79%), baseline energy loss (72%), and baseline GLS (63%). Conclusions: Artificial neural networks can predict progressive subclinical myocardial dysfunction with high accuracy in moderate AS and identify features of importance. Key features associated with classifying progression in subclinical myocardial dysfunction included peak gradient, dimensionless index, GLS, and hydraulic load (energy loss), suggesting that these features should be closely evaluated and monitored in AS.

6.
Hum Mol Genet ; 19(20): 4007-16, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20656787

RESUMO

Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.


Assuntos
Miosinas Cardíacas/genética , Cardiopatias Congênitas/genética , Comunicação Interatrial/genética , Miofibrilas/metabolismo , Cadeias Pesadas de Miosina/genética , Animais , Miosinas Cardíacas/metabolismo , Cardiomiopatia Dilatada/genética , Cromatografia Líquida de Alta Pressão , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Camundongos , Mutação , Mioblastos/citologia , Miofibrilas/genética , Cadeias Pesadas de Miosina/metabolismo , Plasmídeos , Transfecção
7.
Circ Res ; 107(6): 715-27, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20651287

RESUMO

RATIONALE: The cardiac gene regulatory network (GRN) is controlled by transcription factors and signaling inputs, but network logic in development and it unraveling in disease is poorly understood. In development, the membrane-tethered signaling ligand Neuregulin (Nrg)1, expressed in endocardium, is essential for ventricular morphogenesis. In adults, Nrg1 protects against heart failure and can induce cardiomyocytes to divide. OBJECTIVE: To understand the role of Nrg1 in heart development through analysis of null and hypomorphic Nrg1 mutant mice. METHODS AND RESULTS: Chamber domains were correctly specified in Nrg1 mutants, although chamber-restricted genes Hand1 and Cited1 failed to be activated. The chamber GRN subsequently decayed with individual genes exhibiting decay patterns unrelated to known patterning boundaries. Both trabecular and nontrabecular myocardium were affected. Network demise was spatiotemporally dynamic, the most sensitive region being the central part of the left ventricle, in which the GRN underwent complete collapse. Other regions were partially affected with graded sensitivity. In vitro, Nrg1 promoted phospho-Erk1/2-dependent transcription factor expression, cardiomyocyte maturation and cell cycle inhibition. We monitored cardiac pErk1/2 in embryos and found that expression was Nrg1-dependent and levels correlated with cardiac GRN sensitivity in mutants. CONCLUSIONS: The chamber GRN is fundamentally labile and dependent on signaling from extracardiac sources. Nrg1-ErbB1/4-Erk1/2 signaling critically sustains elements of the GRN in trabecular and nontrabecular myocardium, challenging our understanding of Nrg1 function. Transcriptional decay patterns induced by reduced Nrg1 suggest a novel mechanism for cardiac transcriptional regulation and dysfunction in disease, potentially linking biomechanical feedback to molecular pathways for growth and differentiation.


Assuntos
Redes Reguladoras de Genes/fisiologia , Coração/fisiologia , Miocárdio/metabolismo , Neuregulina-1/fisiologia , Animais , Bovinos , Células Cultivadas , Coração/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Miocárdio/química , Miocárdio/citologia , Transdução de Sinais/fisiologia
8.
Circ Res ; 106(3): 573-82, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20019332

RESUMO

RATIONALE: Mutations in the LMNA gene, which encodes the nuclear lamina proteins lamin A and lamin C, are the most common cause of familial dilated cardiomyopathy (DCM). Mechanical stress-induced apoptosis has been proposed as the mechanism underpinning DCM in lamin A/C-deficient hearts, but supporting in vivo evidence has been lacking. OBJECTIVE: Our aim was to study interventions to modify mechanical stress in heterozygous Lmna knockout (Lmna(+/-)) mice. METHODS AND RESULTS: Cardiac structure and function were evaluated before and after exercise training, thoracic aortic constriction, and carvedilol treatment. Lmna(+/-) mice develop adult-onset DCM with relatively more severe disease in males. Lmna(+/-) cardiomyocytes show altered nuclear morphology and perinuclear desmin organization, with enhanced responses to hypo-osmotic stress indicative of cytoskeletal instability. Despite these structural defects that provide a template for mechanical stress-induced damage, young Lmna(+/-) mice subjected to 6 weeks of moderate or strenuous exercise training did not show induction of apoptosis or accelerated DCM. In contrast, regular moderate exercise attenuated DCM development in male Lmna(+/-) mice. Sustained pressure overload generated by thoracic aortic constriction depressed ventricular contraction in young wild-type and Lmna(+/-) mice with no sex or genotype differences in the time-course or severity of response. Treatment of male Lmna(+/-) mice from 12 to 40 weeks with the beta-blocker, carvedilol, prevented the dilatation and contractile dysfunction that was observed in placebo-treated mice. CONCLUSIONS: These data suggest that factors other than mechanical stress-induced apoptosis contribute to DCM and provide the first demonstration that regular moderate exercise and carvedilol can modify disease progression in lamin A/C-deficient hearts.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Carbazóis/uso terapêutico , Cardiomiopatia Dilatada/genética , Coração/fisiopatologia , Lamina Tipo A/deficiência , Miocárdio/patologia , Propanolaminas/uso terapêutico , Estresse Mecânico , Animais , Aorta Torácica , Apoptose , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Carvedilol , Constrição , Desmina/análise , Feminino , Genótipo , Lamina Tipo A/genética , Masculino , Camundongos , Camundongos Knockout , Pressão Osmótica , Condicionamento Físico Animal , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
9.
Med J Aust ; 196(4): 246-9, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22409689

RESUMO

Computed tomography coronary angiography (CTCA) has been shown in multicentre trials to be reliable in ruling out significant coronary artery disease (CAD). It is used most appropriately in symptomatic patients with low to intermediate pretest probability of CAD. It should not be used in asymptomatic subjects, patients with known significant CAD or patients with a high pretest probability of CAD. The radiation dose of CTCA was previously two to three times that of invasive coronary angiography but with modern protocols, it is similar or lower. Patients generally need to be in sinus rhythm, tolerate Β-blockers and nitrates, have a heart rate < 65 beats per minute, be able to hold their breath for 10 seconds, and have normal renal function.


Assuntos
Angiografia Coronária/estatística & dados numéricos , Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Procedimentos Desnecessários/estatística & dados numéricos , Austrália , Feminino , Humanos , Incidência , Masculino , Guias de Prática Clínica como Assunto , Medição de Risco
10.
Echocardiography ; 29(9): E218-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22747659

RESUMO

High transvalvular pressure gradients following aortic valve replacement can be caused by several possible mechanisms. We present the case of an elderly woman with an elevated pressure gradient across an aortic valve bioprosthesis in the setting of complete heart block. After consideration of the presence of complete heart block, the hemodynamic profile of the specific prosthesis, and patient-prosthesis mismatch, only a mild degree of stenosis was found to be attributable to degeneration of the prosthesis. There is no literature quantifying the hemodynamic effect of complete heart block on the pressure gradients across bioprosthetic aortic valves. In the case presented, the transvalvular peak and mean pressure gradients were reduced by 41% and 39%, respectively, following treatment of complete heart block by insertion of a permanent pacemaker.


Assuntos
Estenose da Valva Aórtica/diagnóstico por imagem , Pressão Arterial , Bioprótese/efeitos adversos , Ecocardiografia/métodos , Bloqueio Cardíaco/diagnóstico por imagem , Bloqueio Cardíaco/etiologia , Próteses Valvulares Cardíacas/efeitos adversos , Idoso , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/cirurgia , Reações Falso-Positivas , Feminino , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
11.
Heart Lung Circ ; 21(12): 853-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22776199

RESUMO

A previously healthy 20 year-old male presented with headache, acute pulmonary oedema and left ventricular dysfunction requiring intensive care admission. Cardiorespiratory symptoms resolved within three days; however, the patient complained of persistent headache and had gait unsteadiness. Magnetic resonance imaging showed a large demyelinating lesion in the caudal medulla with scattered cerebral plaques. The patient was subsequently diagnosed with multiple sclerosis. This case describes a rare initial presentation of multiple sclerosis with acute pulmonary oedema and cardiac dysfunction secondary to a lower brainstem lesion.


Assuntos
Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Edema Pulmonar/etiologia , Adulto , Marcha Atáxica/etiologia , Cefaleia/etiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia , Adulto Jovem
12.
J Vis Exp ; (184)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723494

RESUMO

Murine surgical models play an important role in preclinical research. Mechanistic insights into myocardial regeneration after cardiac injury may be gained from cardiothoracic surgery models in 0-14-day-old mice, the cardiomyocytes of which, unlike those of adults, retain proliferative capacity. Mouse pups up to 7 days old are effectively immobilized by hypothermia and do not require intubation for cardiothoracic surgery. Preadolescent (8-14-day-old) mouse pups, however, do require intubation, but this is challenging and there is little information regarding anesthesia to facilitate intubation. Here, we present dosage regimens of ketamine/xylazine/atropine in 10-day-old C57BL/6J mouse pups that allow endotracheal intubation, while minimizing animal mortality. Empirical titration of ketamine/xylazine/atropine dosage regimens to body weight indicated that the response to anesthesia of mouse pups of different weights was non-linear, whereby doses of 20/4/0.12 mg/kg, 30/4/0.12 mg/kg, and 50/6/0.18 mg/kg facilitated intubation of pups weighing between 3.15-4.49 g (n = 22), 4.50-5.49 g (n = 20), and 5.50-8.10 g (n = 20), respectively. Lower-body-weight pups required more intubation attempts than heavier pups (p < 0.001). Survival post-intubation correlated with body weight (59%, 70%, and 80% for low-, mid-, and high-weight groups, respectively, R2 = 0.995). For myocardial infarction surgery after intubation, a surgical plane of anesthesia was induced with 4.5% isoflurane in 100% oxygen and maintained with 2% isoflurane in 100% oxygen. Survival post-surgery was similar for the three weight groups at 92%, 86%, and 88% (p = 0.91). Together with refinements in animal handling practices for intubation and surgery, and minimizing cannibalization by the dam post-surgery, overall survival for the entire procedure (intubation plus surgery) correlated with body weight (55%, 60%, and 70% for low-, mid-, and high-weight groups, respectively, R2 = 0.978). Given the difficulty encountered with intubation of 10-day old pups and the associated high mortality, we recommend cardiothoracic surgery in 10-day-old pups be restricted to pups weighing at least 5.5 g.


Assuntos
Anestesia , Isoflurano , Ketamina , Animais , Derivados da Atropina , Peso Corporal , Intubação Intratraqueal , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio , Xilazina
13.
Nat Cardiovasc Res ; 1(6): 577-591, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39195867

RESUMO

Pressure overload-induced cardiac hypertrophy is a maladaptive response with poor outcomes and limited treatment options. The transient receptor potential melastatin 4 (TRPM4) ion channel is key to activation of a Ca2+/calmodulin-dependent kinase II (CaMKII)-reliant hypertrophic signaling pathway after pressure overload, but TRPM4 is neither stretch-activated nor Ca2+-permeable. Here we show that Piezo1, which is both stretch-activated and Ca2+-permeable, is the mechanosensor that transduces increased myocardial forces into the chemical signal that initiates hypertrophic signaling via a close physical interaction with TRPM4. Cardiomyocyte-specific deletion of Piezo1 in adult mice prevented activation of CaMKII and inhibited the hypertrophic response: residual hypertrophy was associated with calcineurin activation in the absence of its usual inhibition by activated CaMKII. Piezo1 deletion prevented upregulation of the sodium-calcium exchanger and changes in other Ca2+ handling proteins after pressure overload. These findings establish Piezo1 as the cardiomyocyte mechanosensor that instigates the maladaptive hypertrophic response to pressure overload, and as a potential therapeutic target.

14.
J Mol Cell Cardiol ; 50(3): 479-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21156181

RESUMO

Lamin A/C mutations are the most common cause of familial dilated cardiomyopathy (DCM) but the pathogenetic mechanisms are incompletely understood. Nesprins are spectrin repeat-containing proteins that interact with lamin A/C and are components of the linker-of-nucleoskeleton-and-cytoskeleton (LINC) complex that connects the nuclear envelope to the actin cytoskeleton. Our aim was to determine whether changes in nesprin-1 and actin might contribute to DCM in homozygous Lmna knockout (Lmna(-/-)) mice. Here we find that Lmna(-/-) cardiomyocytes have altered nuclear envelope morphology, disorganization of nesprin-1 and heterogeneity in the distribution of nuclear and cytoskeletal actin. Functional interactions of nesprin-1 with nuclear G-actin and with the cytoskeletal γ-actin, α-cardiac actin and α-smooth muscle actin (α-SMA) isoforms were shown by immunoprecipitation and Western blotting. At 4-6 weeks of age, Lmna(-/-) mice had normal levels of γ-actin and α-cardiac actin, but α-SMA expression was increased by 50%. In contrast to the predominant vascular distribution of α-SMA in WT ventricular sections, α-SMA had a diffuse staining pattern in Lmna(-/-) sections. Osmotic swelling studies showed enhanced radial swelling in Lmna(-/-) cardiomyocytes indicative of cytoskeletal instability. The distensibility of Lmna(-/-) cardiomyocytes with osmotic stress was reduced by addition of α-SMA-specific fusion peptide. Our findings support a model in which uncoupling of the nucleus and cytoskeleton associated with disruption of the LINC complex promotes mechanical instability and defective force transmission in cardiomyocytes. Changes in the distribution and expression patterns of nuclear and cytoskeletal actin suggest that diverse transcriptional and structural defects may also contribute to DCM in Lmna(-/-) mice.


Assuntos
Actinas/metabolismo , Lamina Tipo A/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Actinas/genética , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proteínas do Citoesqueleto , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Homozigoto , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia
16.
Heart Lung Circ ; 20(9): 566-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763198

RESUMO

BACKGROUND: Screening of asymptomatic relatives of patients with dilated cardiomyopathy (DCM) has identified a population of individuals with left ventricular dilatation and/or minimally impaired contraction who are believed to have early disease. A proportion of these individuals with early disease progress to overt cardiomyopathy, however to our knowledge there have been no studies that have examined the impact of early intervention on disease progression. METHODS: We evaluated 424 asymptomatic relatives in 110 families of probands with DCM and identified 102 individuals (24%) with suspected "early disease" (EDCM). Thirty-two EDCM subjects were randomised into a six-month placebo-controlled trial of the ß-blocker, carvedilol. Transthoracic echocardiography and plasma nt-proBNP levels were measured at baseline and repeated at six months. The primary trial endpoint was change in left ventricular end-systolic diameter after six months. Subjects completing six months of blinded trial therapy were offered open-label carvedilol and then observed over an extended period with repeated clinical evaluation and echocardiography. RESULTS: At baseline, left ventricular dimensions, systolic function and plasma nt-proBNP levels were similar in carvedilol and placebo groups. There were no significant changes observed in these parameters in either treatment group after six months, however reductions in end-diastolic diameter (% predicted) were observed in carvedilol-treated subjects (P=0.002) during an open-label median follow-up of 32 months (range: 13-56 months). CONCLUSIONS: In an asymptomatic population of individuals with EDCM, treatment with carvedilol for six months had no effect on echocardiographic left ventricular dimensions or systolic function, however longer-term treatment may reverse left ventricular remodelling (Australian Clinical Trials Registry N012605000204640).


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Carbazóis/administração & dosagem , Cardiomiopatia Dilatada/tratamento farmacológico , Propanolaminas/administração & dosagem , Antagonistas Adrenérgicos beta/efeitos adversos , Adulto , Carbazóis/efeitos adversos , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Carvedilol , Ecocardiografia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Propanolaminas/efeitos adversos , Fatores de Tempo
17.
Front Cell Dev Biol ; 9: 639509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659256

RESUMO

RATIONALE: Gq-coupled receptors are thought to play a critical role in the induction of left ventricular hypertrophy (LVH) secondary to pressure overload, although mechano-sensitive channel activation by a variety of mechanisms has also been proposed, and the relative importance of calcineurin- and calmodulin kinase II (CaMKII)-dependent hypertrophic pathways remains controversial. OBJECTIVE: To determine the mechanisms regulating the induction of LVH in response to mechanical pressure overload. METHODS AND RESULTS: Transgenic mice with cardiac-targeted inhibition of Gq-coupled receptors (GqI mice) and their non-transgenic littermates (NTL) were subjected to neurohumoral stimulation (continuous, subcutaneous angiotensin II (AngII) infusion for 14 days) or mechanical pressure overload (transverse aortic arch constriction (TAC) for 21 days) to induce LVH. Candidate signaling pathway activation was examined. As expected, LVH observed in NTL mice with AngII infusion was attenuated in heterozygous (GqI+/-) mice and absent in homozygous (GqI-/-) mice. In contrast, LVH due to TAC was unaltered by either heterozygous or homozygous Gq inhibition. Gene expression of atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and α-skeletal actin (α-SA) was increased 48 h after AngII infusion or TAC in NTL mice; in GqI mice, the increases in ANP, BNP and α-SA in response to AngII were completely absent, as expected, but all three increased after TAC. Increased nuclear translocation of nuclear factor of activated T-cells c4 (NFATc4), indicating calcineurin pathway activation, occurred in NTL mice with AngII infusion but not TAC, and was prevented in GqI mice infused with AngII. Nuclear and cytoplasmic CaMKIIδ levels increased in both NTL and GqI mice after TAC but not AngII infusion, with increased cytoplasmic phospho- and total histone deacetylase 4 (HDAC4) and increased nuclear myocyte enhancer factor 2 (MEF2) levels. CONCLUSION: Cardiac Gq receptors and calcineurin activation are required for neurohumorally mediated LVH but not for LVH induced by mechanical pressure overload (TAC). Rather, TAC-induced LVH is associated with activation of the CaMKII-HDAC4-MEF2 pathway.

18.
Prog Biophys Mol Biol ; 159: 22-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763257

RESUMO

The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.


Assuntos
Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Dimetilpolisiloxanos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miocárdio/citologia , Estresse Mecânico
19.
Commun Biol ; 4(1): 1038, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489534

RESUMO

Mechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like most plasma membrane ion channel proteins they must pass through biosynthetic quality control in the endoplasmic reticulum that results in them reaching their destination at the plasma membrane. Here we show that N-linked glycosylation of two highly conserved asparagine residues in the 'cap' region of mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature Piezo1 protein. The N-glycans in the cap are a pre-requisite for N-glycosylation in the 'propeller' regions, which are present in loops that are essential for mechanotransduction. Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and bicuspid aortic valve display reduced fully N-glycosylated Piezo1 protein. Thus the N-linked glycosylation status in vitro correlates with efficient membrane trafficking and will aid in determining the functional impact of Piezo1 variants of unknown significance.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/genética , Mecanotransdução Celular , Mutação , Membrana Celular/metabolismo , Glicosilação , Humanos , Canais Iônicos/metabolismo
20.
Elife ; 102021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190686

RESUMO

Pathological left ventricular hypertrophy (LVH) occurs in response to pressure overload and remains the single most important clinical predictor of cardiac mortality. The molecular pathways in the induction of pressure overload LVH are potential targets for therapeutic intervention. Current treatments aim to remove the pressure overload stimulus for LVH, but do not completely reverse adverse cardiac remodelling. Although numerous molecular signalling steps in the induction of LVH have been identified, the initial step by which mechanical stretch associated with cardiac pressure overload is converted into a chemical signal that initiates hypertrophic signalling remains unresolved. In this study, we show that selective deletion of transient receptor potential melastatin 4 (TRPM4) channels in mouse cardiomyocytes results in an approximately 50% reduction in the LVH induced by transverse aortic constriction. Our results suggest that TRPM4 channel is an important component of the mechanosensory signalling pathway that induces LVH in response to pressure overload and represents a potential novel therapeutic target for the prevention of pathological LVH.


Assuntos
Deleção de Genes , Hipertrofia Ventricular Esquerda/genética , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/genética , Animais , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Canais de Cátion TRPM/efeitos adversos , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA