Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Environ Manage ; 370: 122377, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243655

RESUMO

Hydraulic conditions exert a comprehensive and vital influence on constructed wetlands (CWs). However, research on this subject is relatively limited. Hydraulic parameters can be categorized into design and operational parameters based on their properties. The design parameters are represented by the hydraulic gradient, substrate porosity, and aspect ratio, while operational parameters are represented by the hydraulic retention time, hydraulic loading rate, and water depth. These parameters directly or indirectly affect the operational lifespan and pollutant removal performance of CWs. Currently, the primary measures for optimizing the hydraulic conditions of CWs involve hydraulic structure and numerical simulation optimization methods. In this review, we aimed to elucidate the impact of hydraulic conditions on CW performance and summarize current optimization strategies. By highlighting the significance of hydraulic parameters in enhancing pollutant removal and extending operational lifespan, this review provides valuable insights for improving CW design and management. The findings will be useful for researchers and practitioners seeking to optimize CW systems and advance the application of nature-based solutions for wastewater treatment.

2.
J Environ Manage ; 363: 121336, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850915

RESUMO

Sulfur-siderite autotrophic denitrification (SSAD) has been proved to solve the key problem of low nitrogen removal efficiency caused by the shortage of carbon source in constructed wetlands (CWs). In this study, five vertical flow constructed wetlands (VFCWs) were constructed with different Fe/S ratios (0/0, 0/1, 1/1, 2/1 and 1/2) to optimizing SSAD process, labeled S.0, S.1, S.2, S.3 and S.4. The results showed that the best NO3--N and TN removal rates were achieved with a Fe/S ratio of 2:1 (S.3), which were 96.26 ± 1.40% and 93.63 ± 3.12%, respectively. The abundance of denitrification genes (nirS, nirK and nosZ) in S.3 was significantly increased. Illumina high-throughput sequencing analysis indicated that the abundance and diversity of microorganisms involved in the "Sulfur-Iron-Nitrogen" cycle were enriched in S.3. The current study provided that the "Sulfur-Iron-Nitrogen" cycle in CWs was optimized by adjusting Fe/S ratio, and more types of denitrifying bacteria could be enriched, thereby enhancing nitrogen removal.


Assuntos
Desnitrificação , Ferro , Nitrogênio , Enxofre , Áreas Alagadas , Nitrogênio/metabolismo , Enxofre/metabolismo , Ferro/metabolismo
3.
Dev Biol ; 486: 56-70, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341730

RESUMO

Many neurons in bilaterian animals are polarized with functionally distinct axons and dendrites. Microtubule polarity, microtubule stability, and the axon initial segment (AIS) have all been shown to influence polarized transport in neurons. Each of these cytoskeletal cues could act independently to control axon and dendrite identity, or there could be a hierarchy in which one acts upstream of the others. Here we test the hypothesis that microtubule polarity acts as a master regulator of neuronal polarity by using a Drosophila genetic background in which some dendrites have normal minus-end-out microtubule polarity and others have the axonal plus-end-out polarity. In these mosaic dendrite arbors, we found that ribosomes, which are more abundant in dendrites than axons, were reduced in plus-end-out dendrites, while an axonal cargo was increased. In addition, we determined that microtubule stability was different in plus-end-out and minus-end-out dendrites, with plus-end-out ones having more stable microtubules like axons. Similarly, we found that ectopic diffusion barriers, like those at the AIS, formed at the base of dendrites with plus-end-out regions. Thus, changes in microtubule polarity were sufficient to rearrange other cytoskeletal features associated with neuronal polarization. However, overall neuron shape was maintained with only subtle changes in branching in mosaic arbors. We conclude that microtubule polarity can act upstream of many aspects of intracellular neuronal polarization, but shape is relatively resilient to changes in microtubule polarity in vivo.


Assuntos
Polaridade Celular , Dendritos , Animais , Axônios/fisiologia , Polaridade Celular/fisiologia , Dendritos/fisiologia , Drosophila , Microtúbulos/fisiologia , Neurônios/fisiologia
4.
J Cell Sci ; 134(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096607

RESUMO

Axons and dendrites are distinguished by microtubule polarity. In Drosophila, dendrites are dominated by minus-end-out microtubules, whereas axons contain plus-end-out microtubules. Local nucleation in dendrites generates microtubules in both orientations. To understand why dendritic nucleation does not disrupt polarity, we used live imaging to analyze the fate of microtubules generated at branch points. We found that they had different rates of success exiting the branch based on orientation: correctly oriented minus-end-out microtubules succeeded in leaving about twice as often as incorrectly oriented microtubules. Increased success relied on other microtubules in a parallel orientation. From a candidate screen, we identified Trim9 and kinesin-5 (Klp61F) as machinery that promoted growth of new microtubules. In S2 cells, Eb1 recruited Trim9 to microtubules. Klp61F promoted microtubule growth in vitro and in vivo, and could recruit Trim9 in S2 cells. In summary, the data argue that Trim9 and kinesin-5 act together at microtubule plus ends to help polymerizing microtubules parallel to pre-existing ones resist catastrophe.


Assuntos
Polaridade Celular , Dendritos , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Polimerização
5.
PLoS Genet ; 12(12): e1006457, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27911898

RESUMO

In vertebrate neurons, the axon initial segment (AIS) is specialized for action potential initiation. It is organized by a giant 480 Kd variant of ankyrin G (AnkG) that serves as an anchor for ion channels and is required for a plasma membrane diffusion barrier that excludes somatodendritic proteins from the axon. An unusually long exon required to encode this 480Kd variant is thought to have been inserted only recently during vertebrate evolution, so the giant ankyrin-based AIS scaffold has been viewed as a vertebrate adaptation for fast, precise signaling. We re-examined AIS evolution through phylogenomic analysis of ankyrins and by testing the role of ankyrins in proximal axon organization in a model multipolar Drosophila neuron (ddaE). We find giant isoforms of ankyrin in all major bilaterian phyla, and present evidence in favor of a single common origin for giant ankyrins and the corresponding long exon in a bilaterian ancestor. This finding raises the question of whether giant ankyrin isoforms play a conserved role in AIS organization throughout the Bilateria. We examined this possibility by looking for conserved ankyrin-dependent AIS features in Drosophila ddaE neurons via live imaging. We found that ddaE neurons have an axonal diffusion barrier proximal to the cell body that requires a giant isoform of the neuronal ankyrin Ank2. Furthermore, the potassium channel shal concentrates in the proximal axon in an Ank2-dependent manner. Our results indicate that the giant ankyrin-based cytoskeleton of the AIS may have evolved prior to the radiation of extant bilaterian lineages, much earlier than previously thought.


Assuntos
Anquirinas/genética , Segmento Inicial do Axônio/metabolismo , Proteínas de Drosophila/genética , Filogenia , Canais de Potássio Shal/genética , Potenciais de Ação/genética , Animais , Anquirinas/biossíntese , Membrana Celular/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Neurônios/metabolismo , Canais de Potássio Shal/metabolismo
6.
J Cell Sci ; 129(17): 3274-81, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27411367

RESUMO

After being severed from the cell body, axons initiate an active degeneration program known as Wallerian degeneration. Although dendrites also seem to have an active injury-induced degeneration program, no endogenous regulators of this process are known. Because microtubule disassembly has been proposed to play a role in both pruning and injury-induced degeneration, we used a Drosophila model to identify microtubule regulators involved in dendrite degeneration. We found that, when levels of fidgetin were reduced using mutant or RNA interference (RNAi) strategies, dendrite degeneration was delayed, but axon degeneration and dendrite pruning proceeded with normal timing. We explored two possible ways in which fidgetin could promote dendrite degeneration: (1) by acting constitutively to moderate microtubule stability in dendrites, or (2) by acting specifically after injury to disassemble microtubules. When comparing microtubule dynamics and stability in uninjured neurons with and without fidgetin, we could not find evidence that fidgetin regulated microtubule stability constitutively. However, we identified a fidgetin-dependent increase in microtubule dynamics in severed dendrites. We conclude that fidgetin acts after injury to promote disassembly of microtubules in dendrites severed from the cell body.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Microtúbulos/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas Nucleares/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Acetilação , Animais , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos , Modelos Biológicos , Interferência de RNA
7.
Chemosphere ; 355: 141898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579951

RESUMO

Global warming trend is accelerating. This study proposes a green and economical methane (CH4) control strategy by plant combination in constructed wetlands (CWs). In this study, a single planting of Acorus calamus L. hybrid constructed wetland (HCW-A) and a mixed planting of Acorus calamus L. and Eichhornia crassipes (Mart.) Solms hybrid constructed wetland (HCW-EA) were constructed. The differences in nitrogen removal performance and CH4 emissions between HCW-A and HCW-EA were compared and analyzed. The findings indicated that HCW-EA demonstrated significant improvements over HCW-A, with NH4+-N and TN removal rates increasing by 21.61% and 16.38% respectively, and CH4 emissions decreased by 43.36%. The microbiological analysis results showed that plant combination promoted the enrichment of Proteobacteria, Alphaproteobacteria and Bacillus. More nitrifying bacteria carrying nxrA genes and denitrifying bacteria carrying nirK genes accelerated the nitrogen transformation process. In addition, the absolute abundance ratio of pmoA/mcrA increased, reducing the release of CH4.


Assuntos
Desnitrificação , Áreas Alagadas , Nitrogênio , Plantas , Genes Bacterianos
8.
Cell Rep ; 42(9): 113026, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37635352

RESUMO

Wallerian axonal degeneration (WD) does not occur in the nematode C. elegans, in contrast to other model animals. However, WD depends on the NADase activity of SARM1, a protein that is also expressed in C. elegans (ceSARM/ceTIR-1). We hypothesized that differences in SARM between species might exist and account for the divergence in WD. We first show that expression of the human (h)SARM1, but not ceTIR-1, in C. elegans neurons is sufficient to confer axon degeneration after nerve injury. Next, we determined the cryoelectron microscopy structure of ceTIR-1 and found that, unlike hSARM1, which exists as an auto-inhibited ring octamer, ceTIR-1 forms a readily active 9-mer. Enzymatically, the NADase activity of ceTIR-1 is substantially weaker (10-fold higher Km) than that of hSARM1, and even when fully active, it falls short of consuming all cellular NAD+. Our experiments provide insight into the molecular mechanisms and evolution of SARM orthologs and WD across species.


Assuntos
Axônios , Caenorhabditis elegans , Animais , Humanos , Axônios/metabolismo , Caenorhabditis elegans/metabolismo , Microscopia Crioeletrônica , Neurônios/metabolismo , Proteínas do Domínio Armadillo/metabolismo , NAD+ Nucleosidase/metabolismo , Degeneração Walleriana/metabolismo
9.
Dev Neurobiol ; 81(3): 321-332, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32291942

RESUMO

Most neurons must last a lifetime and their microtubule cytoskeleton is an important contributor to their longevity. Neurons have some of the most stable microtubules of all cells, but the tip of every microtubule remains dynamic and, although requiring constant GTP consumption, microtubules are always being rebuilt. While some ongoing level of rebuilding always occurs, overall microtubule stability can be modulated in response to injury and stress as well as the normal developmental process of pruning. Specific microtubule severing proteins act in different contexts to increase microtubule dynamicity and promote degeneration and pruning. After axon injury, complex changes in dynamics occur and these are important for both neuroprotection induced by injury and subsequent outgrowth of a new axon. Understanding how microtubule dynamics is modulated in different scenarios, as well as the impact of the changes in stability, is an important avenue to explore for development of strategies to promote neuroprotection and regeneration.


Assuntos
Axônios , Neurônios , Axônios/metabolismo , Citoesqueleto , Microtúbulos/metabolismo , Neurônios/metabolismo
10.
J Cell Biol ; 218(7): 2309-2328, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076454

RESUMO

Microtubule minus ends are thought to be stable in cells. Surprisingly, in Drosophila and zebrafish neurons, we observed persistent minus end growth, with runs lasting over 10 min. In Drosophila, extended minus end growth depended on Patronin, and Patronin reduction disrupted dendritic minus-end-out polarity. In fly dendrites, microtubule nucleation sites localize at dendrite branch points. Therefore, we hypothesized minus end growth might be particularly important beyond branch points. Distal dendrites have mixed polarity, and reduction of Patronin lowered the number of minus-end-out microtubules. More strikingly, extra Patronin made terminal dendrites almost completely minus-end-out, indicating low Patronin normally limits minus-end-out microtubules. To determine whether minus end growth populated new dendrites with microtubules, we analyzed dendrite development and regeneration. Minus ends extended into growing dendrites in the presence of Patronin. In sum, our data suggest that Patronin facilitates sustained microtubule minus end growth, which is critical for populating dendrites with minus-end-out microtubules.


Assuntos
Dendritos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Animais , Polaridade Celular/genética , Drosophila melanogaster/genética , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Cinesinas/genética , Microtúbulos/genética
11.
G3 (Bethesda) ; 8(5): 1841-1853, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29602811

RESUMO

In Drosophila neurons, uniform minus-end-out polarity in dendrites is maintained in part by kinesin-2-mediated steering of growing microtubules at branch points. Apc links the kinesin motor to growing microtubule plus ends and Apc2 recruits Apc to branch points where it functions. Because Apc2 acts to concentrate other steering proteins to branch points, we wished to understand how Apc2 is targeted. From an initial broad candidate RNAi screen, we found Miro (a mitochondrial transport protein), Ank2, Axin, spastin and Rac1 were required to position Apc2-GFP at dendrite branch points. YFP-Ank2-L8, Axin-GFP and mitochondria also localized to branch points suggesting the screen identified relevant proteins. By performing secondary screens, we found that energy production by mitochondria was key for Apc2-GFP positioning and spastin acted upstream of mitochondria. Ank2 seems to act independently from other players, except its membrane partner, Neuroglian (Nrg). Rac1 likely acts through Arp2/3 to generate branched actin to help recruit Apc2-GFP. Axin can function in a variety of wnt signaling pathways, one of which includes heterotrimeric G proteins and Frizzleds. Knockdown of Gαs, Gαo, Fz and Fz2, reduced targeting of Apc2 and Axin to branch points. Overall our data suggest that mitochondrial energy production, Nrg/Ank2, branched actin generated by Arp2/3 and Fz/G proteins/Axin function as four modules that control localization of the microtubule regulator Apc2 to its site of action in dendrite branch points.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Biomarcadores/metabolismo , Metabolismo Energético , Feminino , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Mutação/genética , Via de Sinalização Wnt
12.
PLoS One ; 8(6): e67186, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826228

RESUMO

The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.


Assuntos
Lisina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Acetilação , Alanina/metabolismo , Apoptose/fisiologia , Arginina/metabolismo , Glutamina/metabolismo , Células HEK293 , HIV-1 , Humanos , Células Jurkat , Microtúbulos/metabolismo , Mitose/fisiologia , Mutação , Ligação Proteica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA