Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 59(4): 738-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747755

RESUMO

BACKGROUND & AIMS: Proliferation of liver progenitor cells (LPCs) is associated with inflammation and fibrosis in chronic liver diseases. However, how inflammation and fibrosis affect LPCs remains obscure. METHODS: We examined the role of interferon (IFN)-γ, an important pro-inflammatory and anti-fibrotic cytokine, in LPC expansion in HBV-infected patients and in mice challenged with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- or choline-deficient, ethionine-supplemented (CDE) diet as well as in primary LPCs and LPC cell line. RESULTS: The CK19 staining scores correlated with inflammation and fibrosis grades in the livers from 110 HBV-infected patients. Nine-month IFN-γ treatment decreased LPC numbers, inflammation, and fibrosis in these HBV-infected patients. Similarly, a two-week IFN-γ treatment also decreased LPC activation in DDC-treated mice. Disruption of IFN-γ or its signaling components (e.g., IFNGR, STAT1, and IRF-1) increased LPC proliferation and liver fibrosis in DDC-fed mice. In contrast, deletion of IFN-γ did not increase, but rather slightly reduced LPC proliferation in CDE-fed mice. In vitro, IFN-γ attenuated proliferation of the LPC cell line BMOL and of primary LPCs from wild type mice, but not STAT1(-/-) or IRF-1(-/-) mice. Furthermore, co-culture assays suggest that IFN-γ can indirectly promote LPC proliferation via the activation of macrophages but attenuate it via the inhibition of hepatic stellate cells. CONCLUSIONS: IFN-γ inhibits LPC expansion via the direct inhibition of LPC proliferation and indirect attenuation of liver fibrosis in the DDC model, but it may also enhance LPC expansion via the promotion of inflammation in the CDE model; thereby playing dual roles in regulating LPC proliferation in vivo.


Assuntos
Células-Tronco Adultas/citologia , Hepatite B Crônica/patologia , Hepatócitos/citologia , Interferon gama/fisiologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/fisiologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/fisiologia , Hepatite B Crônica/fisiopatologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Humanos , Interferon gama/deficiência , Interferon gama/farmacologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Cirrose Hepática/prevenção & controle , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Piridinas/administração & dosagem , Piridinas/toxicidade , Transdução de Sinais/efeitos dos fármacos
2.
Lab Invest ; 89(9): 1043-52, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564844

RESUMO

Liver regeneration is a very complex and well-orchestrated process associated with signaling cascades involving cytokines, growth factors, and metabolic pathways. Adiponectin is an adipocytokine secreted by mature adipocytes, and its receptors are widely distributed in many tissues, including the liver. Adiponectin has direct actions in the liver with prominent roles to improve hepatic insulin sensitivity, increase fatty acid oxidation, and decrease inflammation. To test the hypothesis that adiponectin is required for normal progress of liver regeneration, 2/3 partial hepatectomy (PH) was performed on wild-type and adiponectin-null mice. Compared to wild-type mice, adiponectin-null mice displayed decreased liver mass regrowth, impeded hepatocyte proliferation, and increased hepatic lipid accumulation. Gene expression analysis revealed that adiponectin regulated the gene transcription related to lipid metabolism. Furthermore, the suppressed hepatocyte proliferation was accompanied with reduced signal transducer and activator of transcription protein 3 (STAT3) activity and enhanced suppressor of cytokine signaling 3 (Socs3) transcription. In conclusion, adiponectin-null mice exhibit impaired liver regeneration and increased hepatic steatosis. Increased expression of Socs3 and subsequently reduced activation of STAT3 in adiponectin-null mice may contribute to the alteration of the liver regeneration capability and hepatic lipid metabolism after PH.


Assuntos
Adiponectina/deficiência , Regeneração Hepática/fisiologia , Fator de Transcrição STAT3/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Hepatectomia , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Fígado/cirurgia , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transcrição Gênica , Ativação Transcricional
3.
Acta Pharmacol Sin ; 29(2): 245-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18215355

RESUMO

AIM: Microglial activation has been implicated in many neurological diseases. In this study, we examined the effects of tetrandrine (TET), a major pharmacologically-active compound of Chinese herb Stephania tetrandra S Moore on microglial activation. METHODS: The microglia pretreated with or without TET were activated by lipopolysaccharide (LPS) in vitro. Nitric oxide (NO) release, superoxide anion (O2-) generation, as well as TNF-alpha and interleukin-6 (IL-6) production by microglia were measured afterwards. Electrophoretic mobility shift assay was performed to determine whether NF-kappaB activity in microglia was affected by TET treatment. RESULTS: We found that TET inhibited the LPS-induced activation of microglia by decreasing the production of NO and O2-, consequently affecting the release of TNF-alphaand IL-6 in LPS-induced microglial activation. Such suppressive effect was accompanied by inhibiting transcription factor NF-kappaB activation. CONCLUSION: Our results suggest that TET might modulate LPS-induced microglial activation by inhibiting the NF-kappaB-mediated release of inflammatory factors.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzilisoquinolinas/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Citocinas/metabolismo , Técnicas In Vitro , Ativação de Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/biossíntese , Nitritos/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo
4.
Mol Cell Biochem ; 315(1-2): 41-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18498042

RESUMO

Astrocyte activation has been implicated in the pathogenesis of many neurological diseases. These reactive astrocytes are capable of producing a variety of proinflammatory mediators and potentially neurotoxic compounds, such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1beta (IL-1beta). In this study, we examined the suppressive effects of Tetrandrine (TET) on astrocyte activation induced by lipopolysaccharide (LPS) in vitro. We found that TET decreased the release of NO, TNF-alpha, IL-6 and IL-1beta in LPS-activated astrocytes. Also mRNA expression levels of inducible nitric oxide synthase (iNOS), macrophage inflammatory protein-1alpha (MIP-1alpha) and vascular cell adhesion molecule-1 (VCAM-1) were inhibited in TET pretreated astrocytes. Such suppressive effects might be resulted from the inhibition of nuclear factor kappa B (NF-kappaB) activation through downregulating IkappaB kinases (IKKs) phosphoration, which decreased inhibitor of nuclear factor-kappaB-alpha (IkappaBalpha) phosphoration and degradation. Our results suggest that TET acted to regulate astrocyte activation through inhibiting IKKs-IkappaBalpha-NF-kappaB signaling pathway.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Benzilisoquinolinas/farmacologia , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase I-kappa B/antagonistas & inibidores , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Inibidor de NF-kappaB alfa , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA