Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19723-19731, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37963337

RESUMO

Substantial amounts of particulate organic carbon (POC) are released during macroalgal growth; however, the fate of these POCs and their carbon sequestration effects remain unclear. Here, field investigations found that Ulva prolifera caused a significant increase of POC in seawater below the surface during a macroalgal bloom. However, laboratory simulations revealed that 77.6% of these POC was easily degraded by microorganisms in a short period of time, concurrently resulting in the production of dissolved organic carbon (DOC) from POC transformation. Over a period of 3 months, the bioavailable components of macroalgae-released POC and POC-transformed DOC were degraded, leaving 39.6% of the antibiodegradable substances composed of biorecalcitrant POC and biorecalcitrant DOC. However, although the biorecalcitrant POC was rich in humic-like components resisting biodegradation, the biorecalcitrant POC exhibited greater sensitivity to photodegradation than biorecalcitrant DOC. The photodegradation removal rate of biorecalcitrant POC (14.1%) was more than 10 times that of biorecalcitrant DOC (1.2%). Ultimately, a substantial portion (36.3%) of the POC released by growing macroalgae could potentially perform long-term carbon sequestration after conversion to recalcitrant POC and recalcitrant DOC, and these inert carbons derived from macroalgal POC have been previously ignored and should also be included in macroalgal carbon sequestration accounting.


Assuntos
Sequestro de Carbono , Ulva , Carbono , Água do Mar , Oceanos e Mares
2.
Environ Sci Technol ; 57(1): 770-779, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36511764

RESUMO

Despite green tides (or macroalgal blooms) having multiple negative effects, it is thought that they have a positive effect on carbon sequestration, although this aspect is rarely studied. Here, during the world's largest green tide (caused by Ulva prolifera) in the Yellow Sea, the concentration of dissolved organic carbon (DOC) increased by 20-37% in intensive macroalgal areas, and thousands of new molecular formulas rich in CHNO and CHOS were introduced. The DOC molecular species derived from U. prolifera constituted ∼18% of the total DOC molecular species in the seawater of bloom area, indicating the profound effect that green tides have on shaping coastal DOC. In addition, 46% of the macroalgae-derived DOC was labile DOC (LDOC), which had only a short residence time due to rapid microbial utilization. The remaining 54% was recalcitrant DOC (RDOC) rich in humic-like substances, polycyclic aromatics, and highly aromatic compounds that resisted microbial degradation and therefore have the potential to play a role in long-term carbon sequestration. Notably, source analysis showed that in addition to the microbial carbon pump, macroalgae are also an important source of RDOC. The number of RDOC molecular species contributed by macroalgae even exceed (77 vs 23%) that contributed by microorganisms.


Assuntos
Matéria Orgânica Dissolvida , Ulva , Eutrofização , Sequestro de Carbono , Água do Mar , Substâncias Húmicas , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA