Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36395132

RESUMO

Infantile spasms (IS) is a typical childhood epileptic disorder with generalized seizures. The sudden, frequent and complex characteristics of infantile spasms are the main causes of sudden death, severe comorbidities and other adverse consequences. Effective prediction is highly critical to infantile spasms subjects, but few related studies have been done in the past. To address this, this study proposes a seizure prediction framework for infantile spasms by combining the statistical analysis and deep learning model. The analysis is conducted on dividing the continuous scalp electroencephalograms (sEEG) into 5 phases: Interictal, Preictal, Seizure Prediction Horizon (SPH), Seizure, and Postictal. The brain network of Phase-Locking Value (PLV) of 5 typical brain rhythms is constructed, and the mechanism of epileptic changes is analyzed by statistical methods. It is found that 1) the connections between the prefrontal, occipital, and central regions show a large variability at each stage of seizure transition, and 2) 4 sub-bands of brain rhythms ( θ , α , ß , γ ) are predominant. Group and individual variabilities are validated by using the Resnet18 deep model on data from 25 patients with infantile spasms, where the consistent results to statistical analyses can be observed. The optimized model achieves an average of 79.78 % , 94.46% , 75.46% accuracy, specificity, and recall rate, respectively. The method accomplishes the analysis of the synergy between infantile spasms mechanism, model, data and algorithm, providing a guideline to build an intelligent and systematic model for comprehensive IS seizure prediction.


Assuntos
Epilepsia , Espasmos Infantis , Humanos , Lactente , Criança , Espasmos Infantis/diagnóstico , Convulsões/diagnóstico , Espasmo , Eletroencefalografia/métodos
2.
Neural Netw ; 153: 76-86, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714423

RESUMO

The common age-dependent West syndrome can be diagnosed accurately by electroencephalogram (EEG), but its pathogenesis and evolution remain unclear. Existing research mainly aims at the study of West seizure markers in time/frequency domain, while less literature uses a graph-theoretic approach to analyze changes among different brain regions. In this paper, the scalp EEG based functional connectivity (including Correlation, Coherence, Time Frequency Cross Mutual Information, Phase-Locking Value, Phase Lag Index, Weighted Phase Lag Index) and network topology parameters (including Clustering coefficient, Feature path length, Global efficiency, and Local efficiency) are comprehensively studied for the prognostic analysis of the West episode cycle. The scalp EEGs of 15 children with clinically diagnosed string spasticity seizures are used for prospective study, where the signal is divided into pre-seizure, seizure, and post-seizure states in 5 typical brain wave rhythm frequency bands (δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz), ß (13-30 Hz), and γ (30-80 Hz)) for functional connectivity analysis. The study shows that recurrent West seizures weaken connections between brain regions responsible for cognition and intelligence, while brain regions responsible for information synergy and visual reception have greater variability in connectivity during seizures. It is observed that the changes inßandγfrequency bands of the multiband brain network connectivity patterns calculated by Corr and WPLI can be preliminarily used as judgment of seizure cycle changes in West syndrome.


Assuntos
Espasmos Infantis , Encéfalo , Criança , Eletroencefalografia , Humanos , Lactente , Estudos Prospectivos , Couro Cabeludo , Convulsões/diagnóstico , Espasmos Infantis/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA