Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11419-11428, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570990

RESUMO

A 10 W super-wideband ultra-low-intensity-noise single-frequency fiber laser (SFFL) at 1 µm is experimentally demonstrated, based on dual gain saturation effects from semiconductors and optical fibers, together with an analog-digital hybrid optoelectronic feedback loop. Three intensity-noise-inhibited units synergistically work, which actualizes a connection of effective bandwidth and enhancement of noise-suppressing amplitude. With the cascade action of the semiconductor optical amplifier and optical fiber amplifier, the laser power is remarkably boosted. Eventually, an SFFL with an output power of 10.8 W and a relative intensity noise (RIN) below -150 dB/Hz at the frequency range over 1 Hz is realized. More meaningfully, within the total frequency range of 10 Hz to 10 GHz exceeding 29 octaves, the RIN is controlled to below -160 dB/Hz, approaching the shot-noise limit (SNL) level. To the best of our knowledge, this is the lowest RIN result of SFFL within such an extensive frequency range, and this is the highest output power of the near-SNL super-wideband SFFL. Furthermore, a linewidth of less than 0.8 kHz, a long-term stable polarization extinction ratio of 20 dB, and an optical signal-to-noise ratio of over 60 dB are obtained simultaneously. This start-of-the-art SFFL has provided a systematic solution for high-power and low-noise light sources, which is competitive for sophisticated applications, such as free-space laser communication, space-based gravitational wave detection, and super-long-distance space coherent velocity measurement and ranging.

2.
Opt Express ; 31(3): 5122-5130, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785463

RESUMO

An optimized bidirectional pumping fiber amplifier is demonstrated to achieve low-frequency intensity noise suppression and effective power enhancement simultaneously. Based on the concept analysis of the gain saturation effect, the influence of input signal power and pump power on intensity noise suppression is investigated and optimized systematically. Further combining with the optimization of the pumping configuration to achieve the even-distribution gain, the relative intensity noise (RIN) of 1083 nm single-frequency fiber laser (SFFL) is suppressed with 9.1 dB in the frequency range below 10 kHz. Additionally, the laser power is boosted from 10.97 dBm to 25.02 dBm, and a power instability of ±0.31% is realized. This technology has contributed to simultaneously improving the power and noise performance of the 1083 nm SFFL, which can be applied to a multi-channel helium (He) optically pumping magnetometer. Furthermore, this technique has broken the mindset that power amplification of the conventional fiber amplifiers will inevitably cause the degradation of intensity noise property, and provided a valuable guidance for the development of high-performance SFFLs.

3.
Opt Express ; 31(12): 18734-18750, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381307

RESUMO

In this article, the vector dynamics of semiconductor optical amplifiers (SOAs) are systematically analyzed and developed to explore its mechanism of intensity noise suppression. First, theoretical investigation on the gain saturation effect and carrier dynamics is performed via a vectorial model, and the calculated result unravels desynchronized intensity fluctuations of two orthogonal polarization states. Particularly, it predicts an out-of-phase case, which allows the cancellation of the fluctuations via adding up the orthogonally-polarized components, then establishes a synthetic optical field with stable amplitude and dynamic polarization, and thereby enables a remarkable relative intensity noise (RIN) reduction. Here, we term this approach of RIN suppression as out-of-phase polarization mixing (OPM). To validate the OPM mechanism, we conduct an SOA-mediated noise-suppression experiment based on a reliable single-frequency fiber laser (SFFL) with the presence of relaxation oscillation peak, and subsequently carry out a polarization resolvable measurement. By this means, out-of-phase intensity oscillations with respect to the orthogonal polarization states are clearly demonstrated, and consequently enable a maximum suppression amplitude of >75 dB. Notably, the RIN of 1550-nm SFFL, suppressed by joint action of OPM and gain saturation effect, is dramatically reduced to -160 dB/Hz in a wideband of 0.5 MHz∼10 GHz, and the performance of which is excellent by comparing with the corresponding shot noise limit of -161.9 dB/Hz. The proposal of OPM here not only facilitates us to dissect the vector dynamics of SOA but also offers a promising solution to realize wideband near-shot-noise-limited SFFL.

4.
Opt Lett ; 48(17): 4665-4668, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656581

RESUMO

An ultrafine electro-optical frequency comb (EOFC) with plentiful comb teeth is demonstrated. Adopting a single-frequency fiber laser as a light source, cascade phase modulation based on a sinusoidal signal and a frequency-time transformation (FTT) signal is executed to generate the EOFC with high fineness. Meanwhile, a cyclic fast frequency shifting strategy is introduced to boost the number of comb teeth and the bandwidth of the EOFC. As a result, an EOFC with 12600 comb lines covering a broad bandwidth from -6.3 GHz to 6.3 GHz is established, corresponding to an ultrafine comb space of 1 MHz. Moreover, the power fluctuation of a comb tooth is less than 0.5 dBm. This state-of-the-art EOFC has significant potential in the field of precision spectroscopy.

5.
Opt Lett ; 48(23): 6116-6119, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039205

RESUMO

Aiming at applications like expanding usable wave band of optical telecommunication and preparing Sr optical lattice clocks, a 1627 nm single-frequency fiber laser (SFFL) is demonstrated based on a 7-m-long self-designed Er-doped hybridized glass fiber (EDHF) and a linear cavity configuration with a loop mirror filter (LMF). By inserting a 10-m-long unpumped commercial Er-doped fiber as a dynamic Bragg grating into the LMF, a stable single-longitudinal-mode (SLM) laser with an output power of about 10 mW is obtained. The optical signal-to-noise ratio (OSNR) of SFFL is over 50 dB, and the linewidth is about 3.7 kHz. The measured relative intensity noise (RIN) is less than -140 dB/Hz at frequencies of over 0.5 MHz, and a power variation in 1 h is less than ±0.26%. To our best knowledge, it is the first demonstration of a SFFL operating at the U-band. This 1627 nm SFFL can provide advanced light source technology support for many cutting-edge applications.

6.
Opt Express ; 30(20): 37101-37111, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258627

RESUMO

A pulse compressing technology of single-frequency Q-switched laser based on the cascaded four-wave mixing (CFWM) effect is demonstrated theoretically and experimentally, for the first time to the best of our knowledge. A theoretical model of the pulse compression is established through deconstructing the pulse duration evolution in the high-order Stokes and anti-Stokes lights of CFWM. A pulse compression ratio of (2|m|+1)1/2 is quantificationally obtained with m corresponding to the order number of the CFWM light. Utilizing dual-wavelength (DW) single-frequency Q-switched laser injected into a highly nonlinear fiber (HNLF), the pulse compression and the spectral broadening phenomenon are observed simultaneously. As the order number of the CFWM light increases from 0-order to 3-order, the pulse duration has reduced from 115 ns to 47 ns with a compression ratio of 2.45, which is essentially consistent with the theoretical analysis. The pulse compressing technique by CFWM is conducive to promoting the performance development of the single-frequency Q-switched laser, which can improve the system precision in the Lidar, trace gas detection, and high-precision ranging. Furthermore, this technology based on time-frequency transformation dynamics may be generally applicable to other single-frequency pulsed fiber lasers.

7.
Opt Lett ; 47(17): 4475-4478, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048682

RESUMO

An over-20-octaves-bandwidth ultralow-intensity-noise 1064-nm single-frequency fiber laser (SFFL) is demonstrated based on a comprehensive all-optical technique. With a joint action of booster optical amplifier (BOA) and reflective Yb-doped fiber amplifier (RYDFA), two-fold optical gain saturation effects, respectively occurring in the media of semiconductor and fiber, have been synthetically leveraged. Benefiting from the gain dynamics in complementary time scales, i.e., nanosecond-order carrier lifetime in BOA and millisecond-order upper-level lifetime in RYDFA, the relative intensity noise (RIN) is reduced to -150 dB/Hz from 0.2 kHz to 350 MHz, which exceeds 20-octaves bandwidth. Remarkably, a maximum suppressing ratio of >54 dB is obtained, and the RIN in the range of 0.09-10 GHz reaches -161 dB/Hz which is only 2.3 dB above the shot-noise limit. This broad-bandwidth ultralow-intensity-noise SFFL can serve as an important building block for squeezed light generation, space laser communication, space gravitational wave detection, etc.

8.
Appl Opt ; 60(34): 10684-10688, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200933

RESUMO

Based mainly on the distributed Bragg reflector (DBR) short linear cavity with a 1.6-cm-long heavily Tm3+-doped germanate glass fiber and semiconductor saturable absorber mirror (SESAM), a compact passively Q-switched single-frequency fiber laser at around 1950 nm is demonstrated experimentally. By comparing pulse characters of Q-switched operations fulfilled via SESAMs with different parameters, a stable output pulse is optimized to deliver a maximum average power of 22.2 mW, a peak power of 0.67 W, and an optical signal-to-noise ratio over 61 dB. Moreover, the repetition rate of the output pulse can be tuned from 92 to 520 kHz with a narrowest pulse width of 64 ns. To the best of our knowledge, this is the first time a 2.0 µm passively Q-switched single-frequency DBR Tm3+-doped fiber laser has been realized, and it shows great potential application in remote sensing, biomedical science, and nonlinear optics.

9.
Appl Opt ; 59(26): 7907-7911, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976463

RESUMO

Noise-sideband-free and narrow-linewidth photonic microwave generation based on an optical heterodyne technique is demonstrated experimentally. By beating a self-injection-locking low-noise single-frequency fiber laser and a Brillouin fiber laser, a 9.4 GHz microwave is produced, and its noise sidebands are completely suppressed. Additionally, the signal-to-noise ratio of the microwave signal is improved by 15 dB from 40 to 55 dB, and the linewidth is compressed from 1.6 to 0.53 kHz. The high-performance photonic microwave based on low-noise fiber lasers is a promising candidate in further applications such as wireless network, lidar, and satellite communication.

10.
Opt Express ; 26(10): 12863-12869, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801319

RESUMO

A 1603 nm high optical signal-to-noise ratio (OSNR) kHz-linewidth linearly-polarized all-fiber single-frequency master-oscillator power amplifier (MOPA) is demonstrated. To suppress the amplified spontaneous emission from Yb3+/Er3+ ions with the customized filters and optimize the length of the double cladding active fiber, an over 15 W stable single-longitudinal-mode laser is achieved with an OSNR of >70 dB. A measured laser linewidth of 4.5 kHz and a polarization-extinction ratio of >23 dB are obtained at the full output power. This L-band high-power single-frequency MOPA is promising for high-resolution molecular spectroscopy and pumping of Tm3+-doped or Tm3+/Ho3+ co-doped laser.

11.
Opt Lett ; 43(1): 42-45, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328192

RESUMO

The Earth's magnetic field has significant effects that protect us from cosmic radiation and provide navigation for biological migration. However, slow temporal variations originating in the liquid outer core invariably exist. To understand the working mechanism of the geomagnetic field and improve accuracy of navigation systems, a high-precision magnetometer is essential to measure the absolute magnetic field. A helium optically pumping magnetometer is an advanced approach, but its sensitivity and accuracy are directly limited by the low-frequency relative intensity noise and frequency stability characteristics of a light source. Here, we demonstrate a near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. The relative intensity noise is only 5 dB higher than the quantum-noise limit, and the root mean square of frequency fluctuation is ∼17 kHz after locked. This fiber laser could suppress the fluctuation of magnetic resonant frequency and improve the signal-to-noise ratio of the magnetic resonance signal detection.

12.
Opt Express ; 25(11): 12601-12610, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786615

RESUMO

We investigated the frequency noise in the distributed Bragg reflector single-frequency fiber laser (DBR-SFFL) theoretically and experimentally. A complete theoretical analysis is demonstrated by considering the energy-transfer upconversion (ETU) process and establishing linkages between the frequency noise and the relative intensity noise (RIN) of the DBR-SFFL. The experimental results of the diverse DBR-SFFLs in different working conditions are in good agreement with the theoretical analyses. These investigations are beneficial to optimizing frequency noise property to promote the wide application of the DBR-SFFLs. The proposed results can be generally applicable to the short-linear-cavity SFFL with centimeters order of the cavity length.

13.
Opt Express ; 25(12): 13324-13331, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788868

RESUMO

An all-fiber high-power and broad-frequency-band near-shot-noise-limited kHz-linewidth (Δν ~1.7 kHz) single-frequency master-oscillator power amplifier (MOPA) laser at 1.5 µm is demonstrated. To significantly suppress the intensity noise of seed laser and mitigate the detrimental effects of amplified spontaneous emission and stimulated Brillouin scattering in fiber amplifiers, more than 23 W of a stable low noise single-frequency laser output is achieved with a relative intensity noise of < -150 dB/Hz @0.5 mW (near to the shot-noise limit: -152.9 dB/Hz) in the frequency band from 0.1 to 50 MHz. It is believed that the achieved laser performance of ultra-low intensity noise and high-power output make the laser source become a promising candidate in further applications, such as cold atom optical lattice, quantum key distribution, and gravitational wave detection.

14.
Opt Express ; 25(2): 1535-1541, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158035

RESUMO

Based on a self-injection locking scheme and the nonlinear amplification effect of a semiconductor optical amplifier, a low intensity noise amplified ultrashort cavity single-frequency fiber laser at 978 nm is demonstrated with a final output power of > 230 mW and a broad temperature range of > 15 °C for single-longitudinal-mode operation. The effective cavity length of the fiber oscillator is less than 6 mm, comprising a 3.5-mm-long highly Yb3+-doped phosphate fiber and a pair of fiber Bragg gratings. For the frequency range from 1.8 to 10 MHz, the relative intensity noise close to -150 dB/Hz is achieved. The signal-to-noise ratio of > 68 dB and the laser linewidth of < 10 kHz are obtained. Such narrow linewidth low noise 978 nm laser is promising, as the high-performance pump source or the efficient blue and UV light sources after nonlinear frequency conversion.

15.
Opt Express ; 25(17): 19752-19759, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041663

RESUMO

A kHz-order linewidth controllable 1550 nm single-frequency fiber laser (SFFL) is demonstrated for the first time to our best knowledge. The control of the linewidth is realized by using a low-pass filtered white Gaussian noise (WGN) signal applied on a fiber stretcher in an optical feedback loop. Utilizing WGN signals with different signal amplitudes An and different cutoff frequencies fc, the linewidths are availably controlled in a wide range from 0.8 to 353 kHz. The obtained optical signal-to-noise ratio (OSNR) is more than 72.0 dB, and the relative intensity noise (RIN) at frequency greater than 40 MHz reaches -148.5 dB/Hz which approaches the shot noise limit (-152.9 dB/Hz). This kHz-order linewidth controllable SFFL is meaningful and valuable, for optimizing the receiver sensitivity and bit error rate (BER) performance of the coherent optical communication system based on high-order quadrature amplitude modulation (QAM).

16.
Opt Express ; 24(26): 29794-29799, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059364

RESUMO

A spectrally clean kHz-linewidth single-polarization single-frequency distributed Bragg reflector Yb-doped phosphate fiber (YPF) laser at 1120 nm (> 1100 nm) for the first time is demonstrated. By enhancing the reflectivity of output fiber Bragg grating and optimizing the length of YPF to implement the effective ASE suppression and single-longitudinal-mode long-wavelength lasing, a stable output power of over 62 mW is achieved from a 31-mm-long highly YPF with a linewidth of 5.7 kHz. The signal to noise ratio of > 67 dB, the polarization extinction ratio of > 25 dB, and the relative intensity noise of < -150 dB/Hz for the frequencies above 10.0 MHz are obtained in such single-frequency fiber laser. This narrow linewidth fiber laser is an ideal laser source to generate the coherent single-frequency 560 nm light via frequency doubling for biochemical analysis application.

17.
Opt Express ; 24(4): 3162-7, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906980

RESUMO

A linearly frequency-modulated, actively Q-switched, single-frequency ring fiber laser based on injection seeding from an ultra-short cavity is demonstrated at 1083 nm. A piezoelectric transducer is employed to obtain linearly frequency-modulating performance and over 1.05 GHz frequency-tuning range is achieved with a modulating frequency reaching tens of kilohertz. A maximum peak power of the stable output pulse is over 3.83 W during frequency-modulating process. This type of pulsed fiber laser provides a promising candidate for coherent LIDAR in the measurement of thermosphere.

18.
Opt Express ; 24(14): 16149-55, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410881

RESUMO

We propose a compact dual-wavelength Q-switched single-frequency fiber laser based on a 17-mm-long home-made highly Er3+/Yb3+ co-doped phosphate fiber (EYDPF) and a semiconductor saturable absorber mirror (SESAM). The short cavity length and a polarization-maintaining fiber Bragg grating (PM-FBG) ensure that only one longitudinal mode is supported by each reflection peak. The maximum pulse energy of more than 34.5 nJ was realized with the shortest pulse duration of 110.5 ns and the Q-switched fiber laser has a repetition rate reaching over 700 kHz with a temporal synchronization of pulses at two wavelengths. Besides, the optical signal-to-noise ratio (OSNR) of larger than 64.5 dB was achieved.

19.
Opt Express ; 24(10): 10956-61, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409917

RESUMO

Based on heavily Tm-doped germanate glass fibers (TGFs), a short all-TGF MOPA laser system with uniform core parameters in each stage was demonstrated. An 11.7 W stable single-frequency laser at 1.95 µm with an optical-to-optical conversion efficiency of 20.4% is obtained from a homemade 31-cm-long double-cladding single-mode TGF. The estimated stimulated Brillouin scattering (SBS) threshold of 980 W and the measured relative intensity noise of < -130 dB/Hz for frequencies above 2 MHz are achieved in this MOPA system. Furthermore, the prospect for further power-scaling of such short MOPA laser is considered.

20.
Opt Express ; 24(23): 26209-26214, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857357

RESUMO

An ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser based on self-injection locking has been demonstrated. By the use of a tunable narrow-band fiber Fabry-Perot interferometer, the laser wavelength could be flexibly tuned from 1527 to 1563 nm with linewidths of < 700 Hz. The laser frequency noise is less than 40 dB re Hz/Hz1/2 at low frequencies (< 100 Hz) and reaches -5 dB re Hz/Hz1/2 at around 25 kHz. The measured relative intensity noise (RIN) is less than -130 dB/Hz with regard to frequencies of over 3 MHz, while the obtained linear polarization extinction ratio (LPER) is higher than 28 dB. This ultra-narrow linewidth low-noise tunable single-frequency linear-polarization fiber laser provides a promising candidate for high-order quadrature amplitude modulation (QAM) optical communication system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA