Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673938

RESUMO

Despite data showing that nutritional interventions high in antioxidant/anti-inflammatory properties (anthocyanin-rich foods, such as blueberries/elderberries) may decrease risk of memory loss and cognitive decline, evidence for such effects in mild cognitive impairment (MCI) is limited. This study examined preliminary effects of American elderberry (Sambucus nigra subsp. canadensis) juice on cognition and inflammatory markers in patients with MCI. In a randomized, double-blind, placebo-controlled trial, patients with MCI (n = 24, Mage = 76.33 ± 6.95) received American elderberry (n = 11) or placebo (n = 13) juice (5 mL orally 3 times a day) for 6 months. At baseline, 3 months, and 6 months, patients completed tasks measuring global cognition, verbal memory, language, visuospatial cognitive flexibility/problem solving, and memory. A subsample (n = 12, 7 elderberry/5 placebo) provided blood samples to measure serum inflammatory markers. Multilevel models examined effects of the condition (elderberry/placebo), time (baseline/3 months/6 months), and condition by time interactions on cognition/inflammation outcomes. Attrition rates for elderberry (18%) and placebo (15%) conditions were fairly low. The dosage compliance (elderberry-97%; placebo-97%) and completion of cognitive (elderberry-88%; placebo-87%) and blood-based (elderberry-100%; placebo-100%) assessments was high. Elderberry (not placebo) trended (p = 0.09) towards faster visuospatial problem solving performance from baseline to 6 months. For the elderberry condition, there were significant or significantly trending decreases over time across several markers of low-grade peripheral inflammation, including vasorin, prenylcysteine oxidase 1, and complement Factor D. Only one inflammatory marker showed an increase over time (alpha-2-macroglobin). In contrast, for the placebo, several inflammatory marker levels increased across time (L-lactate dehydrogenase B chain, complement Factor D), with one showing deceased levels over time (L-lactate dehydrogenase A chain). Daily elderberry juice consumption in patients with MCI is feasible and well tolerated and may provide some benefit to visuospatial cognitive flexibility. Preliminary findings suggest elderberry juice may reduce low-grade inflammation compared to a placebo-control. These promising findings support the need for larger, more definitive prospective studies with longer follow-ups to better understand mechanisms of action and the clinical utility of elderberries for potentially mitigating cognitive decline.


Assuntos
Cognição , Disfunção Cognitiva , Sucos de Frutas e Vegetais , Inflamação , Sambucus , Humanos , Masculino , Idoso , Feminino , Cognição/efeitos dos fármacos , Inflamação/sangue , Método Duplo-Cego , Sambucus/química , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Viabilidade , Sambucus nigra/química
2.
Biochem Biophys Res Commun ; 650: 81-86, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36773343

RESUMO

Skeletal muscle differentiation involves activation of quiescent satellite cells to proliferate, differentiate and fuse to form new myofibers; this requires coordination of myogenic transcription factors. Myogenic transcription is tightly regulated by various intracellular signaling pathways, which include members of the protein kinase D (PKD) family. PKD is a family of serine-threonine kinases that regulate gene expression, protein secretion, cell proliferation, differentiation and inflammation. PKD is a unique PKC family member that shares distant sequence homology to calcium-regulated kinases and plays an important role in muscle physiology. In this report, we show that class I histone deacetylase (HDAC) inhibition, and in particular HDAC8 inhibition, attenuated PKD phosphorylation in skeletal C2C12 myoblasts in response to phorbol ester, angiotensin II and dexamethasone signaling independent of changes in total PKD protein expression. As class I HDACs and PKD signaling are requisite for myocyte differentiation, these data suggest that HDAC8 functions as a potential feedback regulator of PKD phosphorylation to control myogenic gene expression.


Assuntos
Mioblastos Esqueléticos , Proteína Quinase C , Fosforilação , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Mioblastos Esqueléticos/metabolismo
3.
Cogn Behav Neurol ; 36(3): 159-165, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067989

RESUMO

BACKGROUND: Typical adults most frequently orient their attention to other people's eyes, whereas individuals with autism spectrum disorder (ASD) orient their attention to other people's mouths. Typical adults also reveal visuospatial biases on tasks such as vertical and horizontal line bisections. Therefore, the difference in face viewing might be related to a more general group difference in the allocation of vertical attention. OBJECTIVE: To use vertical line bisection and quadrisection tasks to evaluate whether individuals with ASD have a more downward-oriented vertical attentional bias than do typical individuals. METHOD: We recruited 20 individuals with ASD and 20 control participants matched for age (6-23 years), IQ, and sex. We asked the individuals to bisect and quadrisect lines on the top and bottom when the vertical lines were placed at the intersection of their right, left, and center egocentric sagittal planes and their coronal plane. The distances from the true midpoint and quadripoint were measured, and between-group performances were compared. RESULTS: No significant difference was found between the ASD and control groups for vertical line bisections or lower line quadrisections. However, when the ASD group was compared with the control group for higher line quadrisections, the ASD group exhibited a greater upward deviation. CONCLUSION: There is no downward vertical attentional spatial bias associated with ASD that could help to explain these individuals' attentional bias toward the mouth. However, additional studies are required to learn if this atypical upward vertical attentional bias might account for some of the symptoms and signs associated with ASD.


Assuntos
Transtorno do Espectro Autista , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Percepção Espacial , Aprendizagem , Face
4.
Cogn Behav Neurol ; 36(1): 28-41, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735330

RESUMO

BACKGROUND: The ability of the autonomic nervous system's stress response to impair aspects of cognitive flexibility is known. However, the ability to modulate the sympathetic response and improve these cognitive impairments via nonpharmacological intervention, such as paced breathing (PB), requires further investigation. OBJECTIVE: To better elucidate the effects of PB on cognition. METHOD: We employed a PB protocol in a total of 52 healthy men and women and measured performance on convergent and divergent cognitive tasks, perceived stress, and physiological measures (eg, blood pressure, heart rate). Participants attended two experimental sessions consisting of either PB or normal breathing followed by cognitive assessments including convergent (compound remote associate, anagram) and divergent (alternate use, fluency) tasks. Experiment 2 consisted of more difficult versions of cognitive tasks compared with Experiment 1. RESULTS: In Experiment 1, PB significantly reduced the female participants' systolic and diastolic blood pressure immediately after the breathing protocol without affecting their cognition. In Experiment 2, PB significantly reduced perceived stress immediately after the breathing protocol, regardless of sex. There was no effect on cognition in Experiment 2, but a correlation was observed between perceived stress change and anagram number solved change. CONCLUSION: While PB modulates sympathetic activity in females, there was a lack of improvement in cognitive flexibility performance. At least for a single trial of PB, cognitive flexibility did not improve.


Assuntos
Cognição , Disfunção Cognitiva , Masculino , Humanos , Feminino , Projetos Piloto , Pressão Sanguínea/fisiologia , Cognição/fisiologia , Frequência Cardíaca/fisiologia
5.
Am J Physiol Heart Circ Physiol ; 321(2): H382-H389, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142888

RESUMO

Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling.NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism.


Assuntos
Proliferação de Células/genética , Fosfatases de Especificidade Dupla/genética , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/genética , Hipertrofia Ventricular Direita/genética , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular/genética , Angiotensina II/farmacologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Vasoconstritores/farmacologia
6.
Bioinformatics ; 36(6): 1663-1667, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688895

RESUMO

MOTIVATION: Our previous study has shown that ERBB2 is overexpressed in the organoid model of MCF10A when the stiffness of the microenvironment is increased to that of high mammographic density (MD). We now aim to identify key transcription factors (TFs) and functional enhancers that regulate processes associated with increased stiffness of the microenvironment in the organoid models of premalignant human mammary cell lines. RESULTS: 3D colony organizations and the cis-regulatory networks of two human mammary epithelial cell lines (184A1 and MCF10A) are investigated as a function of the increased stiffness of the microenvironment within the range of MD. The 3D colonies are imaged using confocal microscopy, and the morphometries of colony organizations and heterogeneity are quantified as a function of the stiffness of the microenvironment using BioSig3D. In a surrogate assay, colony organizations are profiled by transcriptomics. Transcriptome data are enriched by correlative analysis with the computed morphometric indices. Next, a subset of enriched data are processed against publicly available ChIP-Seq data using Model-based Analysis of Regulation of Gene Expression to predict regulatory transcription factors. This integrative analysis of morphometric and transcriptomic data predicted YY1 as one of the cis-regulators in both cell lines as a result of the increased stiffness of the microenvironment. Subsequent experiments validated that YY1 is expressed at protein and mRNA levels for MCF10A and 184A1, respectively. Also, there is a causal relationship between activation of YY1 and ERBB2 when YY1 is overexpressed at the protein level in MCF10A. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Densidade da Mama , Organoides , Fator de Transcrição YY1 , Linhagem Celular , Biologia Computacional , Humanos , Fatores de Transcrição
7.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668293

RESUMO

Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Cardiomegalia/metabolismo , Cardiotônicos/química , Células Cultivadas , Miócitos Cardíacos/metabolismo , Compostos Fitoquímicos/química , Ratos , Ratos Sprague-Dawley
8.
Neuroimage ; 208: 116407, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31809888

RESUMO

AIM: Our purpose was to examine how stress affects functional connectivity (FC) in language processing regions of the brain during a verbal problem solving task associated with creativity. We additionally explored how gender and the presence of the stress-susceptible short allele of the serotonin transporter gene polymorphism influenced this effect. METHODS: Forty-five healthy participants (Mean age: 19.6 â€‹± â€‹1.6 years; 28 females) were recruited to be a part of this study and genotyped to determine the presence or absence of at least one copy of the short (S) allele of the serotonin transporter gene, which is associated with greater susceptibility to stress. The participants underwent functional magnetic resonance imaging in two separate sessions (stress and no stress control). One session utilized a modified version of the Montreal Imaging Stress Test (MIST) to induce stress while the other session consisted of a no stress control task. The MIST and control tasks were interleaved with task blocks during which the participants performed the compound remote associates task, a convergent task that engages divergent thinking, which is a critical component of creativity. We examined the relationship between stress effects on performance and effects on connectivity of language processing regions activated during this task. RESULTS: There was no main effect of stress on functional connectivity for individual ROI pairs. However, in the examination of whether stress effects on performance related to effects on connectivity, changes in middle temporal gyrus connectivity with stress correlated positively with changes in solution latency for individuals with the S allele, but anti-correlated for those with only the L allele. A trend towards a gene â€‹× â€‹stress interaction on solution latency was also observed. DISCUSSION: Results from the study suggest that genetic susceptibility to stress, such as the presence of the S allele, affects neural correlates of performance on tasks related to verbal problem solving, as indicated by connectivity of the middle temporal gyrus. Future work will need to determine whether connectivity of the middle temporal gyrus serves as a marker for the effect of stress susceptibility on cognition, extending into stress susceptible patient populations.


Assuntos
Conectoma , Criatividade , Idioma , Imageamento por Ressonância Magnética , Resolução de Problemas/fisiologia , Estresse Psicológico/fisiopatologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
9.
Am J Physiol Endocrinol Metab ; 318(5): E765-E778, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32228320

RESUMO

We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.


Assuntos
Astrócitos/metabolismo , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Hipotálamo/metabolismo , Inflamação/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica , Ingestão de Alimentos/fisiologia , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética , Renina/metabolismo , Receptor de Pró-Renina
10.
Nat Prod Rep ; 37(5): 653-676, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31993614

RESUMO

Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.


Assuntos
Envelhecimento/genética , Produtos Biológicos/farmacologia , Inflamação/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Compostos Fitoquímicos/farmacologia , Acetilação , Envelhecimento/efeitos dos fármacos , Produtos Biológicos/química , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Dieta , Epigênese Genética , Ácidos Graxos Voláteis/farmacologia , Humanos , Inflamação/etiologia , Inflamação/genética , Doenças Neurodegenerativas/etiologia
11.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503339

RESUMO

Cardiovascular diseases (CVD) are the main cause of death worldwide and create a substantial financial burden. Emerging studies have begun to focus on epigenetic targets and re-establishing healthy gut microbes as therapeutic options for the treatment and prevention of CVD. Phytochemicals, commonly found in fruits and vegetables, have been shown to exert a protective effect against CVD, though their mechanisms of action remain incompletely understood. Of interest, phytochemicals such as curcumin, resveratrol and epigallocatechin gallate (EGCG) have been shown to regulate both histone acetylation and microbiome re-composition. The purpose of this review is to highlight the microbiome-epigenome axis as a therapeutic target for food bioactives in the prevention and/or treatment of CVD. Specifically, we will discuss studies that highlight how the three phytochemicals above alter histone acetylation leading to global changes in gene expression and CVD protection. Then, we will expand upon these phytochemicals to discuss the impact of phytochemical-microbiome-histone acetylation interaction in CVD.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Epigênese Genética , Histonas/química , Microbiota , Acetilação , Animais , Doenças Cardiovasculares/microbiologia , Catequina/análogos & derivados , Catequina/farmacologia , Curcumina/farmacologia , Histona Desacetilases/metabolismo , Humanos , Compostos Fitoquímicos/farmacologia , Processamento de Proteína Pós-Traducional , Resveratrol/farmacologia
12.
J Cell Physiol ; 234(2): 1088-1098, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30203485

RESUMO

Bovine mammary epithelial cells (MAC-Ts) are a common cell line for the study of mammary epithelial inflammation; these cells are used to mechanistically elucidate molecular underpinnings that contribute to bovine mastitis. Bovine mastitis is the most prevalent form of disease in dairy cattle that culminates in annual losses of two billion dollars for the US dairy industry. Thus, there is an urgent need for improved therapeutic strategies. Histone deacetylase (HDAC) inhibitors are efficacious in rodent models of inflammation, yet their role in bovine mammary cells remain unclear. HDACs have traditionally been studied in the regulation of nucleosomal DNA, in which deacetylation of histones impact chromatin accessibility and gene expression. Using MAC-T cells stimulated with tumor necrosis factor α (TNF-α) as a model for mammary cell inflammation, we report that inhibition of HDACs1 and 2 (HDAC1/2) attenuated TNF-α-mediated inflammatory gene expression. Of note, we report that HDAC1/2-mediated inflammatory gene expression was partly regulated by c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation. Here, we report that HDAC1/2 inhibition attenuated JNK and ERK activation and thus inflammatory gene expression. These data suggest that HDACs1 and 2 regulate inflammatory gene expression via canonical (i.e., gene expression) and noncanonical (e.g., signaling dependent) mechanisms. Whereas, further studies using primary cell lines and animal models are needed. Our combined data suggest that HDAC1/2-specific inhibitors may prove efficacious for the treatment of bovine mastitis.


Assuntos
Células Epiteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Bovinos , Linhagem Celular , Células Epiteliais/enzimologia , Feminino , Regulação da Expressão Gênica , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Glândulas Mamárias Animais/enzimologia , Mastite Bovina/tratamento farmacológico , Mastite Bovina/enzimologia , Fosforilação , Transdução de Sinais
13.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597863

RESUMO

Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.


Assuntos
Histona Desacetilases/metabolismo , Miocárdio/metabolismo , Acetilação , Animais , Biomarcadores , Coração/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional
14.
J Mol Cell Cardiol ; 112: 74-82, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28886967

RESUMO

Class I histone deacetylase (HDAC) inhibitors block hypertrophy and fibrosis of the heart by suppressing pathological signaling and gene expression programs in cardiac myocytes and fibroblasts. The impact of HDAC inhibition in unstressed cardiac cells remains poorly understood. Here, we demonstrate that treatment of cultured cardiomyocytes with small molecule HDAC inhibitors leads to dramatic induction of c-Jun amino-terminal kinase (JNK)-interacting protein-1 (JIP1) mRNA and protein expression. In contrast to prior findings, elevated levels of endogenous JIP1 in cardiomyocytes failed to significantly alter JNK signaling or cardiomyocyte hypertrophy. Instead, HDAC inhibitor-mediated induction of JIP1 was required to stimulate expression of the kinesin heavy chain family member, KIF5A. We provide evidence for an HDAC-dependent regulatory circuit that promotes formation of JIP1:KIF5A:microtubule complexes that regulate intracellular transport of cargo such as autophagosomes. These findings define a novel role for class I HDACs in the control of the JIP1/kinesin axis in cardiomyocytes, and suggest that HDAC inhibitors could be used to alter microtubule transport in the heart.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Histona Desacetilases/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Cardiomegalia/genética , Cardiomegalia/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inibidores de Histona Desacetilases/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
15.
Ann Rheum Dis ; 76(1): 277-285, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27457515

RESUMO

OBJECTIVES: Non-selective histone deacetylase (HDAC) inhibitors (HDACi) have demonstrated anti-inflammatory properties in both in vitro and in vivo models of rheumatoid arthritis (RA). Here, we investigated the potential contribution of specific class I and class IIb HDACs to inflammatory gene expression in RA fibroblast-like synoviocytes (FLS). METHODS: RA FLS were incubated with pan-HDACi (ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i, HDAC6i and HDAC8i. Alternatively, FLS were transfected with HDAC3, HDAC6 or interferon (IFN)-α/ß receptor alpha chain (IFNAR1) siRNA. mRNA expression of interleukin (IL)-1ß-inducible genes was measured by quantitative PCR (qPCR) array and signalling pathway activation by immunoblotting and DNA-binding assays. RESULTS: HDAC3/6i, but not HDAC1/2i and HDAC8i, significantly suppressed the majority of IL-1ß-inducible genes targeted by pan-HDACi in RA FLS. Silencing of HDAC3 expression reproduced the effects of HDAC3/6i on gene regulation, contrary to HDAC6-specific inhibition and HDAC6 silencing. Screening of the candidate signal transducers and activators of transcription (STAT)1 transcription factor revealed that HDAC3/6i abrogated STAT1 Tyr701 phosphorylation and DNA binding, but did not affect STAT1 acetylation. HDAC3 activity was required for type I IFN production and subsequent STAT1 activation in FLS. Suppression of type I IFN release by HDAC3/6i resulted in reduced expression of a subset of IFN-dependent genes, including the chemokines CXCL9 and CXCL11. CONCLUSIONS: Inhibition of HDAC3 in RA FLS largely recapitulates the effects of pan-HDACi in suppressing inflammatory gene expression, including type I IFN production in RA FLS. Our results identify HDAC3 as a potential therapeutic target in the treatment of RA and type I IFN-driven autoimmune diseases.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Histona Desacetilases/fisiologia , Mediadores da Inflamação/metabolismo , Sinoviócitos/metabolismo , Acetilação , Adulto , Idoso , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Células Cultivadas , Regulação para Baixo/fisiologia , Feminino , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/genética , Humanos , Interferon beta/biossíntese , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Masculino , Pessoa de Meia-Idade , Fosforilação , Fator de Transcrição STAT1/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/imunologia
16.
Proc Natl Acad Sci U S A ; 111(48): E5178-86, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404307

RESUMO

Proteinopathy causes cardiac disease, remodeling, and heart failure but the pathological mechanisms remain obscure. Mutated αB-crystallin (CryAB(R120G)), when expressed only in cardiomyocytes in transgenic (TG) mice, causes desmin-related cardiomyopathy, a protein conformational disorder. The disease is characterized by the accumulation of toxic misfolded protein species that present as perinuclear aggregates known as aggresomes. Previously, we have used the CryAB(R120G) model to determine the underlying processes that result in these pathologic accumulations and to explore potential therapeutic windows that might be used to decrease proteotoxicity. We noted that total ventricular protein is hypoacetylated while hyperacetylation of α-tubulin, a substrate of histone deacetylase 6 (HDAC6) occurs. HDAC6 has critical roles in protein trafficking and autophagy, but its function in the heart is obscure. Here, we test the hypothesis that tubulin acetylation is an adaptive process in cardiomyocytes. By modulating HDAC6 levels and/or activity genetically and pharmacologically, we determined the effects of tubulin acetylation on aggregate formation in CryAB(R120G) cardiomyocytes. Increasing HDAC6 accelerated aggregate formation, whereas siRNA-mediated knockdown or pharmacological inhibition ameliorated the process. HDAC inhibition in vivo induced tubulin hyperacetylation in CryAB(R120G) TG hearts, which prevented aggregate formation and significantly improved cardiac function. HDAC6 inhibition also increased autophagic flux in cardiomyocytes, and increased autophagy in the diseased heart correlated with increased tubulin acetylation, suggesting that autophagy induction might underlie the observed cardioprotection. Taken together, our data suggest a mechanistic link between tubulin hyperacetylation and autophagy induction and points to HDAC6 as a viable therapeutic target in cardiovascular disease.


Assuntos
Adaptação Fisiológica , Autofagia , Miocárdio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Coração/efeitos dos fármacos , Coração/fisiologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Immunoblotting , Imuno-Histoquímica , Camundongos Transgênicos , Microscopia Eletrônica , Mutação , Miocárdio/citologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , Ratos Sprague-Dawley , Vorinostat , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
17.
J Cell Physiol ; 231(7): 1562-74, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26566083

RESUMO

Knowledge concerning mechanisms that control proliferation and differentiation of preadipocytes is essential to our understanding of adipocyte hyperplasia and the development of obesity. Evidence has shown that temporal regulation of mitogen-activated protein kinase (MAPK) phosphorylation and dephosphorylation is critical for coupling extracellular stimuli to cellular growth and differentiation. Using differentiating 3T3-L1 preadipocytes as a model of adipocyte hyperplasia, we examined a role for dual-specificity phosphatase 1 (DUSP1) on the timely modulation of MAPK signaling during states of growth arrest, proliferation, and differentiation. Using real-time reverse transcription PCR (qRT-PCR), we report that DUSP1 is induced during early preadipocyte proliferation concomitant with ERK and p38 dephosphorylation. As deactivation of ERK and p38 is essential for the progression of adipocyte differentiation, we further showed that de novo mRNA synthesis was required for ERK and p38 dephosphorylation, suggesting a role for "inducible" phosphatases in regulating MAPK signaling. Pharmacological and genetic inhibition of DUSP1 markedly increased ERK and p38 phosphorylation during early adipocyte differentiation. Based on these findings, we postulated that loss of DUSP1 would block adipocyte hyperplasia. However, genetic loss of DUSP1 was not sufficient to prevent preadipocyte proliferation or differentiation, suggesting a role for other phosphatases in the regulation of adipogenesis. In support of this, qRT-PCR identified several MAPK-specific DUSPs induced during early (DUSP2, -4, -5, & -6), mid (DUSP4 & -16) and late (DUSP9) stages of adipocyte differentiation. Collectively, these data suggest an important role for DUSPs in regulating MAPK dephosphorylation, with an emphasis on DUSP1, during early adipogenesis.


Assuntos
Diferenciação Celular/genética , Fosfatase 1 de Especificidade Dupla/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/genética , Obesidade/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proliferação de Células/genética , Fosfatase 1 de Especificidade Dupla/genética , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Obesidade/patologia , Fosforilação , RNA Mensageiro/biossíntese
18.
Am J Physiol Lung Cell Mol Physiol ; 311(1): L124-34, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27233998

RESUMO

Epigenetic mechanisms, including DNA methylation and histone acetylation, regulate gene expression in idiopathic pulmonary arterial hypertension (IPAH). These mechanisms can modulate expression of extracellular superoxide dismutase (SOD3 or EC-SOD), a key vascular antioxidant enzyme, and loss of vascular SOD3 worsens outcomes in animal models of pulmonary arterial hypertension. We hypothesized that SOD3 gene expression is decreased in patients with IPAH due to aberrant DNA methylation and/or histone deacetylation. We used lung tissue and pulmonary artery smooth muscle cells (PASMC) from subjects with IPAH at transplantation and from failed donors (FD). Lung SOD3 mRNA expression and activity was decreased in IPAH vs. FD. In contrast, mitochondrial SOD (Mn-SOD or SOD2) protein expression was unchanged and intracellular SOD activity was unchanged. Using bisulfite sequencing in genomic lung or PASMC DNA, we found the methylation status of the SOD3 promoter was similar between FD and IPAH. Furthermore, treatment with 5-aza-2'-deoxycytidine did not increase PASMC SOD3 mRNA, suggesting DNA methylation was not responsible for PASMC SOD3 expression. Though total histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity, acetylated histones, and acetylated SP1 were similar between IPAH and FD, treatment with two selective class I HDAC inhibitors increased SOD3 only in IPAH PASMC. Class I HDAC3 siRNA also increased SOD3 expression. Trichostatin A, a pan-HDAC inhibitor, decreased proliferation in IPAH, but not in FD PASMC. These data indicate that histone deacetylation, specifically via class I HDAC3, decreases SOD3 expression in PASMC and HDAC inhibitors may protect IPAH in part by increasing PASMC SOD3 expression.


Assuntos
Histonas/metabolismo , Hipertensão Pulmonar/enzimologia , Processamento de Proteína Pós-Traducional , Superóxido Dismutase/metabolismo , Acetilação , Adulto , Animais , Células Cultivadas , Repressão Enzimática , Feminino , Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Regiões Promotoras Genéticas , Ratos , Superóxido Dismutase/genética , Adulto Jovem
19.
Ann Rheum Dis ; 75(2): 430-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452308

RESUMO

OBJECTIVES: Epigenetic modifications play an important role in the regulation of gene transcription and cellular function. Here, we examined if pro-inflammatory factors present in the inflamed joint of patients with rheumatoid arthritis (RA) could regulate histone deacetylase (HDAC) expression and function in fibroblast-like synoviocytes (FLS). METHODS: Protein acetylation in synovial tissue was assessed by immunohistochemistry. The mRNA levels of HDAC family members and inflammatory mediators in the synovial tissue and the changes in HDAC expression in RA FLS were measured by quantitative (q) PCR. FLS were either transfected with HDAC5 siRNA or transduced with adenoviral vector encoding wild-type HDAC5 and the effects of HDAC5 manipulation were examined by qPCR arrays, ELISA and ELISA-based assays. RESULTS: Synovial class I HDAC expression was associated with local expression of tumour necrosis factor (TNF) and matrix metalloproteinase-1, while class IIa HDAC5 expression was inversely associated with parameters of disease activity (erythrocyte sedimentation rate, C-reactive protein, Disease Activity Score in 28 Joints). Interleukin (IL)-1ß or TNF stimulation selectively suppressed HDAC5 expression in RA FLS, which was sufficient and required for optimal IFNB, CXCL9, CXCL10 and CXCL11 induction by IL-1ß, associated with increased nuclear accumulation of the transcription factor, interferon regulatory factor 1(IRF1). CONCLUSIONS: Inflammatory cytokines suppress RA FLS HDAC5 expression, promoting nuclear localisation of IRF1 and transcription of a subset of type I interferon response genes. Our results identify HDAC5 as a novel inflammatory mediator in RA, and suggest that strategies rescuing HDAC5 expression in vivo, or the development of HDAC inhibitors not affecting HDAC5 activity, may have therapeutic applications in RA treatment.


Assuntos
Artrite Reumatoide/metabolismo , Citocinas/genética , Fibroblastos/metabolismo , Histona Desacetilases/metabolismo , Membrana Sinovial/citologia , Adulto , Idoso , Artrite Reumatoide/genética , Sedimentação Sanguínea , Proteína C-Reativa/análise , Epigênese Genética , Feminino , Humanos , Fator Regulador 1 de Interferon/genética , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
20.
Brain Behav Immun ; 58: 57-62, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27181180

RESUMO

Many children and adolescents with autism spectrum disorder (ASD) have significant gastrointestinal (GI) symptoms, but the etiology is currently unknown. Some individuals with ASD show altered reactivity to stress and altered immune markers relative to typically-developing individuals, particularly stress-responsive cytokines including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Acute and chronic stress is associated with the onset and exacerbation of GI symptoms in those without ASD. The present study examined whether GI symptoms in ASD were associated with increases in cortisol, a stress-associated endocrine marker, and TNF-α and IL-6 in response to stress. As hypothesized, a greater amount of lower GI tract symptoms were significantly associated with post-stress cortisol concentration. The relationship between cortisol response to stress and GI functioning was greater for children who had a history of regressive autism. Exploratory analyses revealed significant correlations between cortisol response, intelligence, and inappropriate speech. In contrast, symptoms of the lower GI tract were not associated with levels of TNF-α or IL-6. Significant correlations were found, however, between TNF-α and IL-6 and irritability, socialization, and intelligence. These findings suggest that individuals with ASD and symptoms of the lower GI tract may have an increased response to stress, but this effect is not associated with concomitant changes in TNF-α and IL-6. The relationship between cortisol stress response and lower GI tract symptoms in children with regressive autism, as well as the relationships between cortisol, IL-6, and intelligence in ASD, warrant further investigation.


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/imunologia , Gastroenteropatias/complicações , Gastroenteropatias/imunologia , Estresse Psicológico/complicações , Estresse Psicológico/imunologia , Adolescente , Criança , Citocinas/metabolismo , Sistema Endócrino/imunologia , Feminino , Humanos , Hidrocortisona/metabolismo , Interleucina-6/metabolismo , Masculino , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA