Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nano Lett ; 17(3): 1648-1654, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28206771

RESUMO

Cancer remains one of the leading causes of death worldwide. Biomedical imaging plays a crucial role in all phases of cancer management. Physicians often need to choose the ideal diagnostic imaging modality for each clinical presentation based on complex trade-offs among spatial resolution, sensitivity, contrast, access, cost, and safety. Magnetic particle imaging (MPI) is an emerging tracer imaging modality that detects superparamagnetic iron oxide (SPIO) nanoparticle tracer with high image contrast (zero tissue background signal), high sensitivity (200 nM Fe) with linear quantitation, and zero signal depth attenuation. MPI is also safe in that it uses safe, in some cases even clinically approved, tracers and no ionizing radiation. The superb contrast, sensitivity, safety, and ability to image anywhere in the body lends MPI great promise for cancer imaging. In this study, we show for the first time the use of MPI for in vivo cancer imaging with systemic tracer administration. Here, long circulating MPI-tailored SPIOs were created and administered intravenously in tumor bearing rats. The tumor was highlighted with tumor-to-background ratio of up to 50. The nanoparticle dynamics in the tumor was also well-appreciated, with initial wash-in on the tumor rim, peak uptake at 6 h, and eventual clearance beyond 48 h. Lastly, we demonstrate the quantitative nature of MPI through compartmental fitting in vivo.


Assuntos
Meios de Contraste/análise , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/análise , Neoplasias/diagnóstico por imagem , Animais , Feminino , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Ratos
2.
IEEE Trans Magn ; 51(2)2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25904816

RESUMO

Surface coatings are important components of Magnetic Particle Imaging (MPI) tracers - they preserve their key properties responsible for optimum tracer performance in physiological environments. In vivo, surface coatings form a physical barrier between the hydrophobic SPION cores and the physiological environment, and their design dictates the blood half-life and biodistribution of MPI tracers. Here we show the effect of tuning poly(ethylene glycol) (PEG)-based surface coatings on both in vitro and in vivo (mouse model) MPI performance of SPIONs. Our results showed that varying PEG molecular weight had a profound impact on colloidal stability, characterized using Dynamic Light Scattering (DLS), and the m'(H) response of SPIONs, measured in a 25 kHz/20 mTµ0-1max Magnetic Particle Spectrometer (MPS). Increasing PEG molecular weight from 5 kDa to 20 kDa preserved colloidal stability and m'(H) response of ~25 nm SPIONs - the optimum core diameter for MPI - in serum-rich cell culture medium for up to 24 hours. Furthermore, we compared the in vivo circulation time of SPIONs as a function of hydrodynamic diameter and showed that clustered SPIONs can adversely affect blood half-life; critically, SPIONs with clusters had 5 times shorter blood half-life than individually coated SPIONs. We anticipate that the development of MPI SPION tracers with long blood half-lives have potential not only in vascular imaging applications, but also enable opportunities in molecular targeting and imaging - a critical step towards early cancer detection using the new MPI modality.

3.
IEEE Trans Magn ; 49(7): 3441-3444, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25473124

RESUMO

Magnetic relaxation is exploited in innovative biomedical applications of magnetic particles such as magnetic particle imaging (MPI), magnetic fluid hyperthermia, and bio-sensing. Relaxation behavior should be optimized to achieve high performance imaging, efficient heating, and good SNR in bio-sensing. Using two AC susceptometers with overlapping frequency ranges, we have measured the relaxation behavior of a series of monodisperse magnetic particles and demonstrated that this approach is an effective way to probe particle relaxation characteristics from a few Hz to 10 MHz, the frequencies relevant for MPI, hyperthermia, and sensing.

4.
Med Phys ; 38(3): 1619-26, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520874

RESUMO

PURPOSE: Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, the authors explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency f0. METHODS: Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. The driving field amplitude H0 = 6 mT micro0(-1) and frequency f0 = 250 kHz were chosen to be suitable for imaging small animals. Experimental results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution and size-dependent magnetic relaxation. RESULTS: The experimental results show a clear variation in the MPI signal intensity as a function of MNP diameter that is in agreement with simulated results. A maximum in the plot of MPI signal vs MNP size indicates there is a particular size that is optimal for the chosen f0. CONCLUSIONS: The authors observed that MNPs 15 nm in diameter generate maximum signal amplitude in MPI experiments at 250 kHz. The authors expect the physical basis for this result, the change in magnetic relaxation with MNP size, will impact MPI under other experimental conditions.


Assuntos
Magnetismo , Nanopartículas de Magnetita , Tomografia/métodos , Materiais Revestidos Biocompatíveis , Engenharia , Modelos Teóricos
5.
J Magn Magn Mater ; 321(10): 1548-1551, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19606261

RESUMO

Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe(3)O(4)) and sub-millimeter spatial resolution are possible with MPI.

6.
Phys Med Biol ; 62(9): 3454-3469, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28060771

RESUMO

Optimizing tracers for individual imaging techniques is an active field of research. The purpose of this study was to perform in vitro and in vivo magnetic particle imaging (MPI) measurements using a new monodisperse and size-optimized tracer, LS-008, and to compare it with the performance of Resovist, the standard MPI tracer. Magnetic particle spectroscopy (MPS) and in vitro MPI measurements were performed in concerns of concentration and amount of tracer in a phantom. In vivo studies were carried out in healthy FVB mice. The first group (n = 3) received 60 µl LS-008 (87 mM) and the second (n = 3) diluted Resovist of the same concentration and volume. Tracer injections were performed with a syringe pump during a dynamic MPI scan. For anatomic referencing MRI was applied beforehand of the MPI measurements. Summing up MPS examinations and in vitro MPI experiments, LS-008 showed better sensitivity and spatial resolution than Resovist. In vivo both tracers can visualize the propagation of the bolus through the inferior vena cava. MPI with LS-008 did show less temporal fluctuation artifacts and the pulsation of blood due to respiratory and cardiac cycle was detectable. With LS-008 the aorta was distinguishable from the caval vein while with Resovist this failed. A liver vessel and a vessel structure leading cranially could only be observed with LS-008 and not with Resovist. Beside these structural advantages both tracers showed very different blood half-life. For LS-008 we found 88 min. Resovist did show a fast liver accumulation and a half-life of 13 min. Only with LS-008 the perfusion fraction in liver and kidney was measureable. MPI for angiography can be significantly improved by applying more effective tracers. LS-008 shows a clear improvement concerning the delineation while resolving a larger number of vessels in comparison to Resovist. Therefore, in aspects of quality and quantity LS-008 is clearly favorable for angiographic and perfusion studies.


Assuntos
Meios de Contraste/farmacocinética , Dextranos/sangue , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Imagens de Fantasmas , Animais , Meios de Contraste/administração & dosagem , Dextranos/administração & dosagem , Dextranos/farmacocinética , Técnicas In Vitro , Nanopartículas de Magnetita/administração & dosagem , Camundongos , Distribuição Tecidual
7.
Phys Med Biol ; 62(9): 3440-3453, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28177301

RESUMO

Magnetic particle imaging (MPI) is an emerging tracer-based medical imaging modality that images non-radioactive, kidney-safe superparamagnetic iron oxide (SPIO) tracers. MPI offers quantitative, high-contrast and high-SNR images, so MPI has exceptional promise for applications such as cell tracking, angiography, brain perfusion, cancer detection, traumatic brain injury and pulmonary imaging. In assessing MPI's utility for applications mentioned above, it is important to be able to assess tracer short-term biodistribution as well as long-term clearance from the body. Here, we describe the biodistribution and clearance for two commonly used tracers in MPI: Ferucarbotran (Meito Sangyo Co., Japan) and LS-oo8 (LodeSpin Labs, Seattle, WA). We successfully demonstrate that 3D MPI is able to quantitatively assess short-term biodistribution, as well as long-term tracking and clearance of these tracers in vivo.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Animais , Feminino , Taxa de Depuração Metabólica , Especificidade de Órgãos , Ratos , Ratos Endogâmicos F344 , Distribuição Tecidual
8.
ACS Nano ; 11(10): 10480-10488, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28976180

RESUMO

The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Imagem de Perfusão/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética/instrumentação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem de Perfusão/instrumentação , Fatores de Tempo
9.
ACS Nano ; 11(12): 12067-12076, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29165995

RESUMO

Gastrointestinal (GI) bleeding causes more than 300 000 hospitalizations per year in the United States. Imaging plays a crucial role in accurately locating the source of the bleed for timely intervention. Magnetic particle imaging (MPI) is an emerging clinically translatable imaging modality that images superparamagnetic iron-oxide (SPIO) tracers with extraordinary contrast and sensitivity. This linearly quantitative modality has zero background tissue signal and zero signal depth attenuation. MPI is also safe: there is zero ionizing radiation exposure to the patient and clinically approved tracers can be used with MPI. In this study, we demonstrate the use of MPI along with long-circulating, PEG-stabilized SPIOs for rapid in vivo detection and quantification of GI bleed. A mouse model genetically predisposed to GI polyp development (ApcMin/+) was used for this study, and heparin was used as an anticoagulant to induce acute GI bleeding. We then injected MPI-tailored, long-circulating SPIOs through the tail vein, and tracked the tracer biodistribution over time using our custom-built high resolution field-free line (FFL) MPI scanner. Dynamic MPI projection images captured tracer accumulation in the lower GI tract with excellent contrast. Quantitative analysis of the MPI images show that the mice experienced GI bleed rates between 1 and 5 µL/min. Although there are currently no human scale MPI systems, and MPI-tailored SPIOs need to undergo further development and evaluation, clinical translation of the technique is achievable. The robust contrast, sensitivity, safety, ability to image anywhere in the body, along with long-circulating SPIOs lends MPI outstanding promise as a clinical diagnostic tool for GI bleeding.


Assuntos
Modelos Animais de Doenças , Compostos Férricos/química , Hemorragia Gastrointestinal/diagnóstico por imagem , Nanopartículas de Magnetita/química , Imagem Molecular , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Artigo em Inglês | MEDLINE | ID: mdl-26504371

RESUMO

Superparamagnetic iron oxide nanoparticles with highly nonlinear magnetic behavior are attractive for biomedical applications like magnetic particle imaging and magnetic fluid hyperthermia. Such particles display interesting magnetic properties in alternating magnetic fields and here we document experiments that show differences between the magnetization dynamics of certain particles in frozen and melted states. This effect goes beyond the small temperature difference (ΔT ~ 20 °C) and we show the dynamics to be a mixture of Brownian alignment of the particles and Néel rotation of their moments occurring in liquid particle suspensions. These phenomena can be modeled in a stochastic differential equation approach by postulating log-normal distributions and partial Brownian alignment of an effective anisotropy axis. We emphasize that precise particle-specific characterization through experiments and nonlinear simulations is necessary to predict dynamics in solution and optimize their behavior for emerging biomedical applications including magnetic particle imaging.

11.
Nanoscale ; 7(25): 11142-54, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26059262

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.


Assuntos
Nanopartículas de Magnetita/química , Compostos Férricos , Temperatura Alta , Compostos de Ferro , Nanotecnologia , Ácido Oleico , Tamanho da Partícula , Análise Espectral Raman
12.
IEEE Trans Med Imaging ; 34(5): 1077-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25438306

RESUMO

Magnetic particle imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on tracers optimized for MRI T2(∗) -weighted imaging that are sub-optimal for MPI. Here, we describe new tracers tailored to MPI's unique physics, synthesized using an organic-phase process and functionalized to ensure biocompatibility and adequate in vivo circulation time. Tailored tracers showed up to 3 × greater signal-to-noise ratio and better spatial resolution than existing commercial tracers in MPI images of phantoms.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
13.
Appl Phys Lett ; 105(18): 183102, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25422526

RESUMO

This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe3O4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25 nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

14.
Biomaterials ; 34(15): 3837-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23434348

RESUMO

Magnetic Particle Imaging (MPI) is a new biomedical imaging modality that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide (SPIO) nanoparticle tracer distributions. In this study, we synthesized monodisperse tracers for enhanced MPI performance and investigated both, their blood clearance time using a 25 kHz magnetic particle spectrometer (MPS), and biodistribution using a combination of quantitative T2-weighted MRI and tissue histology. In vitro and in vivo MPI performance of our magnetic nanoparticle tracers (MNTs), subject to biological constraints, were compared to commercially available SPIOs (Resovist). Monodisperse MNTs showed a 2-fold greater signal per unit mass, and 20% better spatial resolution. In vitro evaluation of tracers showed that MPI performance of our MNTs is preserved in blood, serum-rich cell-culture medium and gel; thus independent of changes in hydrodynamic volume and fluid viscosity - a critical prerequisite for in vivo MPI. In a rodent model, our MNTs circulated for 15 min - 3× longer than Resovist - and supported our in vitro evaluation that MPI signal is preserved in the physiological environment. Furthermore, MRI and histology analysis showed that MNTs distribute in the reticuloendothelial system (RES) in a manner similar to clinically approved SPIO agents. MNTs demonstrating long-circulation times and optimized MPI performance show potential as angiography tracers and blood-pool agents for the emerging MPI imaging modality.


Assuntos
Diagnóstico por Imagem/métodos , Magnetismo/métodos , Nanopartículas de Magnetita/química , Animais , Dextranos/sangue , Feminino , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Especificidade de Órgãos , Análise Espectral , Distribuição Tecidual
15.
J Appl Phys ; 111(7): 7B318-7B3185, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22434939

RESUMO

Magnetic particle imaging (MPI) uses safe iron oxide nanoparticle tracers to offer fundamentally new capabilities for medical imaging, in applications as vascular imaging and ultra-sensitive cancer therapeutics. MPI is perhaps the first medical imaging platform to intrinsically exploit nanoscale material properties. MPI tracers contain magnetic nanoparticles whose tunable, size-dependent magnetic properties can be optimized by selecting a particular particle size and narrow size-distribution. In this paper we present experimental MPI measurements acquired using a homemade MPI magnetometer: a zero-dimensional MPI imaging system designed to characterize tracer performance by measuring the derivative of the time-varying tracer magnetization, M'(H(t)), at a driving frequency of 25 kHz. We show that MPI performance is optimized by selecting phase-pure magnetite tracers of a particular size and narrow size distribution; in this work, tracers with 20 nm median diameter, log-normal distribution shape parameter, σ(v), equal to 0.26, and hydrodynamic diameter equal to 30 nm showed the best performance. Furthermore, these optimized MPI tracers show 4 × greater signal intensity (measured at the third harmonic) and 20% better spatial resolution compared with commercial nanoparticles developed for MRI.

16.
J Appl Phys ; 111(7): 7B306-7B3063, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22393267

RESUMO

Magnetic fluid hyperthermia (MFH) employs heat dissipation from magnetic nanoparticles to elicit a therapeutic outcome in tumor sites, which results in either cell death (>42 °C) or damage (<42 °C) depending on the localized rise in temperature. We investigated the therapeutic effect of MFH in immortalized T lymphocyte (Jurkat) cells using monodisperse magnetite (Fe(3)O(4)) nanoparticles (MNPs) synthesized in organic solvents and subsequently transferred to aqueous phase using a biocompatible amphiphilic polymer. Monodisperse MNPs, ∼16 nm diameter, show maximum heating efficiency, or specific loss power (watts/g Fe(3)O(4)) in a 373 kHz alternating magnetic field. Our in vitro results, for 15 min of heating, show that only 40% of cells survive for a relatively low dose (490 µg Fe/ml) of these size-optimized MNPs, compared to 80% and 90% survival fraction for 12 and 13 nm MNPs at 600 µg Fe/ml. The significant decrease in cell viability due to MNP-induced hyperthermia from only size-optimized nanoparticles demonstrates the central idea of tailoring size for a specific frequency in order to intrinsically improve the therapeutic potency of MFH by optimizing both dose and time of application.

17.
J Biomed Mater Res A ; 100(3): 728-37, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213652

RESUMO

Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ∼10 to 25 nm), size distribution, and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life, and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ-0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, H0 = 14 kA/m); however, with a broader size distribution (σ-0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment.


Assuntos
Hipertermia Induzida/métodos , Campos Magnéticos , Magnetismo , Nanopartículas Metálicas/química , Humanos , Células Jurkat , Teste de Materiais , Neoplasias/terapia , Tamanho da Partícula , Polietilenoglicóis/química , Difração de Raios X
18.
J Appl Phys ; 109(7): 7B310-7B3103, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21523253

RESUMO

Magnetite (Fe(3)O(4)) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H(0) = 13.4 kA∕m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σ(avg.) = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W∕g Fe(3)O(4)) for 16 nm (diameter) particles. For broader size distributions (σ(avg.) = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (∼30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA