Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(5): 1133-1141, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546974

RESUMO

INTRODUCTION: The DOLAM trial revealed that switching from triple antiretroviral therapy (three-drug regimen; 3DR) to dolutegravir plus lamivudine (two-drug regimen; 2DR) was virologically non-inferior to continuing 3DR after 48 weeks of follow-up. Weight increased with 2DR relative to 3DR but it did not impact on metabolic parameters. METHODS: Multiomics plasma profile was performed to gain further insight into whether this therapy switch might affect specific biological pathways. DOLAM (EudraCT 201500027435) is a Phase 4, randomized, open-label, non-inferiority trial in which virologically suppressed persons with HIV treated with 3DR were assigned (1:1) to switch to 2DR or to continue 3DR for 48 weeks. Untargeted proteomics, metabolomics and lipidomics analyses were performed at baseline and at 48 weeks. Univariate and multivariate analyses were performed to identify changes in key molecules between both therapy arms. RESULTS: Switching from 3DR to 2DR showed a multiomic impact on circulating plasma concentration of N-acetylmuramoyl-L-alanine amidase (Q96PD5), insulin-like growth factor-binding protein 3 (A6XND0), alanine and triglyceride (TG) (48:0). Correlation analyses identified an association among the up-regulation of these four molecules in persons treated with 2DR. CONCLUSIONS: Untargeted multiomics profiling studies identified molecular changes potentially associated with inflammation immune pathways, and with lipid and glucose metabolism. Although these changes could be associated with potential metabolic or cardiovascular consequences, their clinical significance remains uncertain. Further work is needed to confirm these findings and to assess their long-term clinical consequences.


Assuntos
Infecções por HIV , Compostos Heterocíclicos com 3 Anéis , Lamivudina , Oxazinas , Piperazinas , Piridonas , Humanos , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Infecções por HIV/tratamento farmacológico , Lamivudina/uso terapêutico , Lamivudina/administração & dosagem , Masculino , Oxazinas/uso terapêutico , Feminino , Adulto , Pessoa de Meia-Idade , Metabolômica , Lipidômica , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/administração & dosagem , Plasma/química , Proteômica , Terapia Antirretroviral de Alta Atividade , Substituição de Medicamentos , Triglicerídeos/sangue , Alanina/sangue , Multiômica
2.
J Proteome Res ; 21(11): 2555-2565, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36180971

RESUMO

Advances in metabolomics analysis and data treatment increase the knowledge of complex biological systems. One of the most used methodologies is gas chromatography-mass spectrometry (GC-MS) due to its robustness, high separation efficiency, and reliable peak identification through curated databases. However, methodologies are not standardized, and the derivatization steps in GC-MS can introduce experimental errors and take considerable time, exposing the samples to degradation. Here, we propose the injection-port derivatization (IPD) methodology to increase the throughput in plasma metabolomics analysis by GC-MS. The IPD method was evaluated and optimized for different families of metabolites (organic acids, amino acids, fatty acids, sugars, sugar phosphates, etc.) in terms of residence time, injection-port temperature, and sample/derivatization reagent ratio. Finally, the method's usefulness was validated in a study consisting of a cohort of obese patients with or without nonalcoholic steatohepatitis. Our results show a fast, reproducible, precise, and reliable method for the analysis of biological samples by GC-MS. Raw data are publicly available at MetaboLights with Study Identifier MTBLS5151.


Assuntos
Ácidos , Metabolômica , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Indicadores e Reagentes , Aminoácidos
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077379

RESUMO

The third-generation anaplastic lymphoma tyrosine kinase inhibitor (ALK-TKI) lorlatinib has a unique side effect profile that includes hypercholesteremia and hypertriglyceridemia in >80% of lung cancer patients. Here, we tested the hypothesis that lorlatinib might directly promote the accumulation of cholesterol and/or triglycerides in human hepatic cells. We investigated the capacity of the hepatoprotectant silibinin to modify the lipid-modifying activity of lorlatinib. To predict clinically relevant drug−drug interactions if silibinin were used to clinically manage lorlatinib-induced hyperlipidemic effects in hepatic cells, we also explored the capacity of silibinin to interact with and block CYP3A4 activity using in silico computational descriptions and in vitro biochemical assays. A semi-targeted ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS/MS)-based lipidomic approach revealed that short-term treatment of hepatic cells with lorlatinib promotes the accumulation of numerous molecular species of cholesteryl esters and triglycerides. Silibinin treatment significantly protected the steady-state lipidome of hepatocytes against the hyperlipidemic actions of lorlatinib. Lipid staining confirmed the ability of lorlatinib to promote neutral lipid overload in hepatocytes upon long-term exposure, which was prevented by co-treatment with silibinin. Computational analyses and cell-free biochemical assays predicted a weak to moderate inhibitory activity of clinically relevant concentrations of silibinin against CYP3A4 when compared with recommended (rosuvastatin) and non-recommended (simvastatin) statins for lorlatinib-associated dyslipidemia. The elevated plasma cholesterol and triglyceride levels in lorlatinib-treated lung cancer patients might involve primary alterations in the hepatic accumulation of lipid intermediates. Silibinin could be clinically explored to reduce the undesirable hyperlipidemic activity of lorlatinib in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/patologia , Citocromo P-450 CYP3A , Hepatócitos , Humanos , Lactamas , Lactamas Macrocíclicas/farmacologia , Lipídeos/uso terapêutico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis , Silibina , Espectrometria de Massas em Tandem , Triglicerídeos/uso terapêutico
4.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887177

RESUMO

The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.


Assuntos
Laparoscopia , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Gastrectomia/métodos , Humanos , Ácidos Cetoglutáricos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade Mórbida/cirurgia , Serina-Treonina Quinases TOR
5.
J Hepatol ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33961941

RESUMO

BACKGROUND & AIMS: A holistic insight on the relationship between obesity and metabolic dysfunction-associated fatty liver disease is an unmet clinical need. Omics investigations can be used to investigate the multifaceted role of altered mitochondrial pathways to promote nonalcoholic steatohepatitis, a major risk factor for liver disease-associated death. There are no specific treatments but remission via surgery might offer an opportunity to examine the signaling processes that govern the complex spectrum of chronic liver diseases observed in extreme obesity. We aim to assess the emerging relationship between metabolism, methylation and liver disease. METHODS: We tailed the flow of information, before and after steatohepatitis remission, from biochemical, histological, and multi-omics analyses in liver biopsies from patients with extreme obesity and successful bariatric surgery. Functional studies were performed in HepG2 cells and primary hepatocytes. RESULTS: The reversal of hepatic mitochondrial dysfunction and the control of oxidative stress and inflammatory responses revealed the regulatory role of mitogen-activated protein kinases. The reversible metabolic rearrangements leading to steatohepatitis increased the glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for the adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy. The signaling activity of α-ketoglutarate and the associated metabolites also affected methylation-related epigenomic remodeling enzymes. Integrative analysis of hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. CONCLUSION: We provide evidence supporting the multifaceted potential of the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation as a conceivable source of the inefficient adaptive responses leading to steatohepatitis. LAY SUMMARY: Steatohepatitis is a frequent and threatening complication of extreme obesity without specific treatment. Omics technologies can be used to identify therapeutic targets. We highlight increased glutaminolysis-induced α-ketoglutarate production as a potential source of signals promoting and exacerbating steatohepatitis.

6.
Cytokine ; 126: 154923, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31739217

RESUMO

Chemokines, particularly chemokine (C-C- motif) ligand 2 (CCL2), control leukocyte migration into the wall of the artery and regulate the traffic of inflammatory cells. CCL2 is bound to functional receptors (CCR2), but also to atypical chemokine receptors (ACKRs), which do not induce cell migration but can modify chemokine gradients. Whether atherosclerosis alters CCL2 function by influencing the expression of these receptors remains unknown. In a necropsy study, we used immunohistochemistry to explore where and to what extent CCL2 and related receptors are present in diseased arteries that caused the death of men with coronary artery disease compared with unaffected arteries. CCL2 was marginally detected in normal arteries but was more frequently found in the intima. The expression of CCL2 and related receptors was significantly increased in diseased arteries with relative differences among the artery layers. The highest relative increases were those of CCL2 and ACKR1. CCL2 expression was associated with a significant predictive value of atherosclerosis. Findings suggest the need for further insight into receptor specificity or activity and the interplay among chemokines. CCL2-associated conventional and atypical receptors are overexpressed in atherosclerotic arteries, and these may suggest new potential therapeutic targets to locally modify the overall anti-inflammatory response.


Assuntos
Aterosclerose/patologia , Quimiocina CCL2/metabolismo , Doença da Artéria Coronariana/patologia , Sistema do Grupo Sanguíneo Duffy/metabolismo , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo , Adulto , Idoso , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Quimiocinas/metabolismo
7.
Carcinogenesis ; 40(1): 27-40, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30428017

RESUMO

Mutations in the isocitrate dehydrogenase 1 (IDH1) gene confer an oncogenic gain-of-function activity that allows the conversion of α-ketoglutarate (α-KG) to the oncometabolite R-2-hydroxyglutarate (2HG). The accumulation of 2HG inhibits α-KG-dependent histone and DNA demethylases, thereby generating genome-wide hypermethylation phenotypes with cancer-initiating properties. Several chemotypes of mutant IDH1/2-targeted inhibitors have been reported, and some of them are under evaluation in clinical trials. However, the recognition of acquired resistance to such inhibitors within a few years of clinical use raises an urgent need to discover new mutant IDH1 antagonists. Here, we report that a naturally occurring phenolic compound in extra-virgin olive oil (EVOO) selectively inhibits the production of 2HG by neomorphic IDH1 mutations. In silico docking, molecular dynamics, including steered simulations, predicted the ability of the oleoside decarboxymethyl oleuropein aglycone (DOA) to preferentially occupy the allosteric pocket of mutant IDH1. DOA inhibited the enzymatic activity of recombinant mutant IDH1 (R132H) protein in the low micromolar range, whereas >10-fold higher concentrations were required to inhibit the activity of wild-type (WT) IDH1. DOA suppressed 2HG overproduction in engineered human cells expressing a heterozygous IDH1-R132H mutation. DOA restored the 2HG-suppressed activity of histone demethylases as it fully reversed the hypermethylation of H3K9me3 in IDH1-mutant cells. DOA epigenetically restored the expression of PD-L1, an immunosuppressive gene silenced in IDH1 mutant cells via 2HG-driven DNA hypermethylation. DOA selectively blocked colony formation of IDH1 mutant cells while sparing WT IDH1 isogenic counterparts. In sum, the EVOO-derived oleoside DOA is a new, naturally occurring chemotype of mutant IDH1 inhibitors.


Assuntos
Acetatos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Mutação , Piranos/farmacologia , Acetatos/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Monoterpenos Ciclopentânicos , Metilação de DNA , Epigênese Genética , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Azeite de Oliva , Piranos/metabolismo
8.
Plant Foods Hum Nutr ; 74(1): 40-46, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30324543

RESUMO

Plants, including most food and feed plants, produce a broad range of bioactive chemical compounds. Among these compounds, polyphenols are reported to provide beneficial effects as anti-carcinogenic, anti-atherogenic, anti-inflammatory, immune modulating, anti-microbial, vasodilatory and analgesic. Cocoa (Theobroma cacao), a major, economically important, international crop, has been related to several nutritional benefits, which have been associated with the phenolic fraction. The main subclass of flavonoids found in cocoa is flavanols, particularly (epi)catechins monomers, and their oligomers, also known as procyanidins. In this study, these compounds were isolated by different methodologies as solid phase extraction (SPE), semi-preparative high-performance liquid chromatography (HPLC) and membrane technologies to obtain different polyphenolic profiles by HPLC coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and to test their cytotoxicity. Finally, different polyphenolic profiles were collected, where the combination of both semi-preparative HPLC and SPE technologies provided the most purified fractions. Filtration with membranes and SPE provide extracts with different composition depending on the pore size of membranes and on the solvent, respectively. In addition, the results of toxicity assay indicated low levels in all fractions.


Assuntos
Cacau/química , Flavonoides/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Flavonoides/toxicidade , Inocuidade dos Alimentos , Análise de Perigos e Pontos Críticos de Controle , Humanos , Compostos Fitoquímicos/toxicidade , Polifenóis/isolamento & purificação , Polifenóis/toxicidade , Proantocianidinas/isolamento & purificação , Proantocianidinas/toxicidade , Espectrometria de Massas por Ionização por Electrospray
9.
Carcinogenesis ; 39(4): 601-613, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29452350

RESUMO

Targeting tumor-initiating, drug-resistant populations of cancer stem cells (CSC) with phytochemicals is a novel paradigm for cancer prevention and treatment. We herein employed a phenotypic drug discovery approach coupled to mechanism-of-action profiling and target deconvolution to identify phenolic components of extra virgin olive oil (EVOO) capable of suppressing the functional traits of CSC in breast cancer (BC). In vitro screening revealed that the secoiridoid decarboxymethyl oleuropein aglycone (DOA) could selectively target subpopulations of epithelial-like, aldehyde dehydrogenase (ALDH)-positive and mesenchymal-like, CD44+CD24-/low CSC. DOA could potently block the formation of multicellular tumorspheres generated from single-founder stem-like cells in a panel of genetically diverse BC models. Pretreatment of BC populations with noncytotoxic doses of DOA dramatically reduced subsequent tumor-forming capacity in vivo. Mice orthotopically injected with CSC-enriched BC-cell populations pretreated with DOA remained tumor-free for several months. Phenotype microarray-based screening pointed to a synergistic interaction of DOA with the mTOR inhibitor rapamycin and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine. In silico computational studies indicated that DOA binds and inhibits the ATP-binding kinase domain site of mTOR and the S-adenosyl-l-methionine (SAM) cofactor-binding pocket of DNMTs. FRET-based Z-LYTE™ and AlphaScreen-based in vitro assays confirmed the ability of DOA to function as an ATP-competitive mTOR inhibitor and to block the SAM-dependent methylation activity of DNMTs. Our systematic in vitro, in vivo and in silico approaches establish the phenol-conjugated oleoside DOA as a dual mTOR/DNMT inhibitor naturally occurring in EVOO that functionally suppresses CSC-like states responsible for maintaining tumor-initiating cell properties within BC populations.


Assuntos
Acetatos/farmacologia , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Azeite de Oliva/química , Extratos Vegetais/farmacologia , Piranos/farmacologia , Animais , Monoterpenos Ciclopentânicos , Metilases de Modificação do DNA/efeitos dos fármacos , Feminino , Humanos , Camundongos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Vasc Surg ; 68(4): 1135-1142.e6, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29615349

RESUMO

BACKGROUND: The prevalence of lower extremity artery disease (LEAD) is high (20%-25%) in the population older than 65 years, but patients are seldom identified until the disease is advanced. Circulating markers of disease activity might provide patients with a key opportunity for timely treatment. We tested the hypothesis that measuring blood-specific fragments generated during degradation of the extracellular matrix (ECM) could provide further insight into the pathophysiologic mechanism of arterial remodeling. METHODS: The protein profile of diseased arteries from patients undergoing infrainguinal limb revascularization was assessed by a liquid chromatography and tandem mass spectrometry, nontargeted proteomic approach. The information retrieved was the basis for measurement of neoepitope fragments of ECM proteins in the blood of 195 consecutive patients with LEAD by specific enzyme-linked immunosorbent assays. RESULTS: Histologic and proteomic analyses confirmed the structural disorganization of affected arteries. Fourteen of 81 proteins were identified as differentially expressed in diseased arteries with respect to healthy tissues. Most of them were related to ECM components, and the difference in expression was used in multivariate analyses to establish that severe arterial lesions in LEAD patients have a specific proteome. Analysis of neoepitope fragments in blood revealed that fragments of versican and collagen type IV, alone or in combination, segregated patients with mild to moderate symptoms (intermittent claudication, Fontaine I-II) from those with severe LEAD (critical limb ischemia, Fontaine III-IV). CONCLUSIONS: We propose noninvasive candidate biomarkers with the ability to be clinically useful across the LEAD spectrum.


Assuntos
Proteínas da Matriz Extracelular/sangue , Matriz Extracelular/química , Artéria Femoral/química , Claudicação Intermitente/sangue , Isquemia/sangue , Extremidade Inferior/irrigação sanguínea , Fragmentos de Peptídeos/sangue , Doença Arterial Periférica/sangue , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Cromatografia Líquida , Colágeno Tipo IV/sangue , Estado Terminal , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/patologia , Feminino , Artéria Femoral/patologia , Humanos , Claudicação Intermitente/diagnóstico , Isquemia/diagnóstico , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/diagnóstico , Valor Preditivo dos Testes , Prognóstico , Proteômica/métodos , Espectrometria de Massas em Tandem , Versicanas/sangue
11.
Mediators Inflamm ; 2018: 2760272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327580

RESUMO

Peripheral artery disease (PAD) is a common disease affecting 20-25% of population over 60 years old. Early diagnosis is difficult because symptoms only become evident in advanced stages of the disease. Inflammation, impaired metabolism, and mitochondrial dysfunction predispose to PAD, which is normally associated with other highly prevalent and related conditions, such as diabetes, dyslipidemia, and hypertension. We have measured energy-balance-associated metabolite concentrations in the plasma of PAD patients segregated by the severity of the disease and in plasma of healthy volunteers using a quantitative and targeted metabolomic approach. We found relevant associations between several metabolites (3-hydroxybutirate, aconitate, (iso)citrate, glutamate, and serine) with markers of oxidative stress and inflammation. Metabolomic profiling also revealed that (iso)citrate and glutamate are metabolites with high ability to discriminate between healthy participants and PAD patients without symptoms. Collectively, our data suggest that metabolomics provide significant information on the pathogenesis of PAD and useful biomarkers for the diagnosis and assessment of progression.


Assuntos
Doença Arterial Periférica/sangue , Arildialquilfosfatase/metabolismo , Biomarcadores/sangue , Quimiocina CCL2/metabolismo , Estudos Transversais , Metabolismo Energético/fisiologia , Humanos , Metabolômica , Estresse Oxidativo , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/metabolismo
12.
J Immunol ; 195(5): 2442-51, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209622

RESUMO

Macrophages integrate information from the tissue microenvironment and adjust their effector functions according to the prevalent extracellular stimuli. Therefore, macrophages can acquire a variety of activation (polarization) states, and this functional plasticity allows the adequate initiation, regulation, and resolution of inflammatory responses. Modulation of the glucose metabolism contributes to the macrophage adaptation to the surrounding cytokine milieu, as exemplified by the distinct glucose catabolism of macrophages exposed to LPS/IFN-γ or IL-4. To dissect the acquisition of macrophage effector functions in the absence of activating cytokines, we assessed the bioenergetic profile of macrophages generated in the presence of GM-CSF (GM-MØ) or M-CSF (M-MØ), which do not release pro- or anti-inflammatory cytokines unless subjected to additional activating stimuli. Compared to M-MØ, GM-MØ displayed higher oxygen consumption rate and aerobic glycolysis (extracellular acidification rate [ECAR]), as well as higher expression of genes encoding glycolytic enzymes. However, M-MØ exhibited a significantly higher oxygen consumption rate/ECAR ratio. Surprisingly, whereas aerobic glycolysis positively regulated IL1B, TNF, and INHBA mRNA expression in both macrophage subtypes, mitochondrial respiration negatively affected IL6, IL1B, TNF, and CXCL10 mRNA expression in M-MØ. The physiological significance of these results became evident under low oxygen tensions, as hypoxia enhanced ECAR in M-MØ via HIF-1α and HIF-2α, increased expression of glycolytic enzymes and GM-MØ-specific genes, and diminished expression of M-MØ-associated genes. Therefore, our data indicate that GM-MØ and M-MØ display distinct bioenergetic profiles, and that hypoxia triggers a transcriptomic switch in macrophages by promoting a HIF-1α/HIF-2α-dependent increase in ECAR.


Assuntos
Glucose/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Hipóxia Celular , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/imunologia , Glucose/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/imunologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transcriptoma/genética , Transcriptoma/imunologia
13.
Int J Mol Sci ; 18(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208630

RESUMO

Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin-Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cacau/química , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Sementes/química , Vitis/química , Anti-Inflamatórios/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Flavonoides/química , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/farmacologia , Humanos , Hidroxibenzoatos/química , Fenóis/química , Extratos Vegetais/química , Proantocianidinas/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143783

RESUMO

Prevention of the metabolic consequences of a chronic energy-dense/high-fat diet (HFD) represents a public health priority. Metformin is a strong candidate to be incorporated in alternative therapeutic approaches. We used a targeted metabolomic approach to assess changes related to the multi-faceted metabolic disturbances provoked by HFD. We evaluated the protective effects of metformin and explored how pro-inflammatory and metabolic changes respond when mice rendered obese, glucose-intolerant and hyperlipidemic were switched to diet reversal with or without metformin. Mice treated with metformin and diet-reversal showed a dramatically improved protection against HFD-induced hepatic steatosis, a beneficial effect that was accompanied by a lowering of liver-infiltrating pro-inflammatory macrophages and lower release of pro-inflammatory cytokines. Metformin combined with diet reversal promoted effective weight loss along with better glucose control, lowered levels of circulating cholesterol and triglycerides, and reduced adipose tissue content. Our findings underscored the ability of metformin to target the contribution of branched chain amino acids to adipose tissue metabolism while suppressing mitochondrial-dependent biosynthesis in hepatic tissue. The relationship between adipose tissue and liver might provide clinical potential for combining metformin and dietary modifications to protect against the metabolic damage occurring upon excessive dietary fat intake.


Assuntos
Dieta , Metabolismo Energético/efeitos dos fármacos , Metformina/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia , Glucose/metabolismo , Homeostase , Hiperlipidemias/sangue , Hiperlipidemias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma , Metabolômica , Camundongos , Camundongos Knockout
15.
Ann Rheum Dis ; 75(12): 2157-2165, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26920997

RESUMO

OBJECTIVES: Methotrexate (MTX) functions as an antiproliferative agent in cancer and an anti-inflammatory drug in rheumatoid arthritis (RA). Although macrophages critically contribute to RA pathology, their response to MTX remains unknown. As a means to identify MTX response markers, we have explored its transcriptional effect on macrophages polarised by GM-CSF (GM-MØ) or M-CSF (M-MØ), which resemble proinflammatory and anti-inflammatory macrophages found in RA and normal joints, respectively. METHODS: The transcriptomic profile of both human macrophage subtypes exposed to 50 nM of MTX under long-term and short-term schedules were determined using gene expression microarrays, and validated through quantitative real time PCR and ELISA. The molecular pathway involved in macrophage MTX-responsiveness was determined through pharmacological, siRNA-mediated knockdown approaches, metabolomics for polyglutamylated-MTX detection, western blot, and immunofluorescence on RA and normal joints. RESULTS: MTX exclusively modulated gene expression in proinflammatory GM-MØ, where it influenced the expression of 757 genes and induced CCL20 and LIF at the mRNA and protein levels. Pharmacological and siRNA-mediated approaches indicated that macrophage subset-specific MTX responsiveness correlates with thymidylate synthase (TS) expression, as proinflammatory TS+ GM-MØ are susceptible to MTX, whereas anti-inflammatory TSlow/- M-MØ and monocytes are refractory to MTX. Furthermore, p53 activity was found to mediate the TS-dependent MTX-responsiveness of proinflammatory TS+ GM-MØ. Importantly, TS and p53 were found to be expressed by CD163+/TNFα+ GM-CSF-polarised macrophages from RA joints but not from normal synovium. CONCLUSIONS: Macrophage response to MTX is polarisation-dependent and determined by the TS-p53 axis. CCL20 and LIF constitute novel macrophage markers for MTX responsiveness in vitro.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Metotrexato/farmacologia , Transdução de Sinais/efeitos dos fármacos , Humanos , Timidilato Sintase/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
16.
Planta Med ; 81(8): 624-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25714729

RESUMO

Some polyphenols, obtained from plants of broad use, induce a favorable endothelial response in hypertension and beneficial effects in the management of other metabolic cardiovascular risks. Previous studies in our laboratories using the calyces of Hibiscus sabdariffa as a source of polyphenols show that significant effects on hypertension are noticeable in humans only when provided in high amounts. Available data are suggestive in animal models and ex vivo experiments, but data in humans are difficult to acquire. Additionally, and despite the low bioavailability of polyphenols, intervention studies provide evidence for the protective effects of secondary plant metabolites. Assumptions on public health benefits are limited by the lack of scientific knowledge, robust data derived from large randomized clinical trials, and an accurate assessment of the bioactive components provided by common foodstuff. Because it is likely that clinical effects are the result of multiple interactions among different polyphenols rather than the isolated action of unique compounds, to provide polyphenol-rich botanical extracts as dietary supplements is a suggestive option. Unfortunately, the lack of patent perspectives for the pharmaceutical industries and the high cost of production and release for alimentary industries will hamper the performance of the necessary clinical trials. Here we briefly discuss whether and how such limitations may complicate the extensive use of plant-derived products in the management of hypertension and which steps are the necessary to deal with the predictable complexity in a possible clinical practice.


Assuntos
Hibiscus/química , Hipertensão/tratamento farmacológico , Fitoterapia , Polifenóis/uso terapêutico , Disponibilidade Biológica , Flores/química , Humanos
17.
Int J Mol Sci ; 15(11): 20382-402, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25383680

RESUMO

The consumption of polyphenols has frequently been associated with low incidence of degenerative diseases. Most of these natural antioxidants come from fruits, vegetables, spices, grains and herbs. For this reason, there has been increasing interest in identifying plant extract compounds. Polymeric tannins and monomeric flavonoids, such as catechin and epicatechin, in pine bark and green tea extracts could be responsible for the higher antioxidant activities of these extracts. The aim of the present study was to characterize the phenolic compounds in pine bark and green tea concentrated extracts using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-QTOF-MS). A total of 37 and 35 compounds from pine bark and green tea extracts, respectively, were identified as belonging to various structural classes, mainly flavan-3-ol and its derivatives (including procyanidins). The antioxidant capacity of both extracts was evaluated by three complementary antioxidant activity methods: Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). Higher antioxidant activity values by each method were obtained. In addition, total polyphenol and flavan-3-ol contents, which were determined by Folin-Ciocalteu and vanillin assays, respectively, exhibited higher amounts of gallic acid and (+)-catechin equivalents.


Assuntos
Antioxidantes/farmacologia , Pinus/química , Casca de Planta/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Chá/química , Biflavonoides/química , Catequina/química , Cromatografia Líquida de Alta Pressão , Dimerização , Flavonoides/química , Fenóis/química , Proantocianidinas/química , Fatores de Tempo
18.
Clin Nutr ; 43(1): 246-258, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101315

RESUMO

BACKGROUND: The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS: In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS: We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS: Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.


Assuntos
Obesidade Mórbida , Oxilipinas , Humanos , Ácidos Graxos , Obesidade , Obesidade Mórbida/cirurgia , Sobrepeso , Redução de Peso
19.
Plant Foods Hum Nutr ; 68(2): 200-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23475627

RESUMO

A dehydrated vegetables mixture loaded in four pharmaceutical dosage forms as powder, effervescent granulate, sugar granulate and gumdrops were investigated for their antioxidant capacity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging capacity assay, oxygen radical absorbance capacity assay and ferric reducing antioxidant potential assay. Total phenolic content of dehydrated vegetables powder mixture was also measured by the Folin-Ciocalteu method, so as to evaluate its contribution to their total antioxidant function. The effect of different temperatures on stability of these systems after 90 days storage was also evaluated. These formulations presented strong antioxidant properties and high phenolic content (279 mg gallic acid equivalent/g of sample) and thus could be potential rich sources of natural antioxidants. Antioxidant properties differed significantly among selected formulations (p < 0.05). Generally, the losses were lower in samples stored under refrigeration. To interpret the antioxidant properties a kinetic approach was performed. Degradation kinetics for the phenolic content and antioxidant capacity followed a zero-order function. Effervescent granulate was the formulation which underwent faster degradation. Contrary, sugar granulate and gumdrops were much more slowly. Time required to halve the initial amount of phenolic compounds was 589 ± 45 days for samples stored at 4 º C, and 312 ± 16 days for samples stored at room temperature. These developed dosage forms are new and innovative approach for vegetable intakes in population with special requirements providing an improvement in the administration of vegetables and fruits.


Assuntos
Antioxidantes/análise , Formas de Dosagem/normas , Verduras/química , Armazenamento de Medicamentos , Armazenamento de Alimentos , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/farmacologia , Ácido Gálico/análise , Cinética , Fenóis/análise , Pós , Temperatura
20.
Front Immunol ; 14: 1228795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649488

RESUMO

Antiretroviral therapy (ART) induces persistent suppression of HIV-1 replication and gradual recovery of T-cell counts, and consequently, morbidity and mortality from HIV-related illnesses have been significantly reduced. However, in approximately 30% of people living with HIV (PLHIV) on ART, CD4+ T-cell counts fail to normalize despite ART and complete suppression of HIV viral load, resulting in severe immune dysfunction, which may represent an increased risk of clinical progression to AIDS and non-AIDS events as well as increased mortality. These patients are referred to as "immune inadequate responders", "immunodiscordant responders" or "immune nonresponders (INR)". The molecular mechanisms underlying poor CD4+ T-cell recovery are still unclear. In this sense, the use of omics sciences has shed light on possible factors involved in the activity and metabolic dysregulation of immune cells during the failure of CD4+ T-cell recovery in INR. Moreover, identification of key molecules by omics approaches allows for the proposal of potential biomarkers or therapeutic targets to improve CD4+ T-cell recovery and the quality of life of these patients. Hence, this review aimed to summarize the information obtained through different omics concerning the molecular factors and pathways associated with the INR phenotype to better understand the complexity of this immunological status in HIV infection.


Assuntos
Infecções por HIV , Soropositividade para HIV , Humanos , Infecções por HIV/tratamento farmacológico , Multiômica , Qualidade de Vida , Teste de HIV
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA