Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Synchrotron Radiat ; 27(Pt 5): 1278-1288, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876603

RESUMO

An accurate knowledge of the parameters governing the kinetics of block copolymer self-assembly is crucial to model the time- and temperature-dependent evolution of pattern formation during annealing as well as to predict the most efficient conditions for the formation of defect-free patterns. Here, the self-assembly kinetics of a lamellar PS-b-PMMA block copolymer under both isothermal and non-isothermal annealing conditions are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS) experiments with a novel modelling methodology that accounts for the annealing history of the block copolymer film before it reaches the isothermal regime. Such a model allows conventional studies in isothermal annealing conditions to be extended to the more realistic case of non-isothermal annealing and prediction of the accuracy in the determination of the relevant parameters, namely the correlation length and the growth exponent, which define the kinetics of the self-assembly.

2.
Soft Matter ; 14(33): 6799-6808, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29998277

RESUMO

Extreme ultraviolet interference lithography (EUV-IL) is used to manufacture topographical guiding patterns to direct the self-assembly of block copolymers. High-accuracy silicon oxide-like patterns with trenches ranging from 68 nm to 117 nm width are fabricated by exposing a hydrogen silsesquioxane (HSQ) resist layer using EUV-IL. We investigate how the accuracy, the low line width roughness and the low line edge roughness of the resulting patterns allow achieving DSA line/space patterns of a PS-b-PMMA (polystyrene-block-poly methyl methacrylate) block copolymer of 11 nm half-pitch with low defectivity. We conduct an in-depth study of the dependence of the DSA pattern morphology on the trench width and on how the neutral brush covers the guiding pattern. We identify the relation between trench width and the emergence of defects with nanometer precision. Based on these studies, we develop a model that extends available free energy models, which allows us to predict the patterning process window.

3.
Nanotechnology ; 26(14): 145502, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25786069

RESUMO

A stepped cantilever composed of a bottom-up silicon nanowire coupled to a top-down silicon microcantilever electrostatically actuated and with capacitive or optical readout is fabricated and analyzed, both theoretically and experimentally, for mass sensing applications. The mass sensitivity at the nanowire free end and the frequency resolution considering thermomechanical noise are computed for different nanowire dimensions. The results obtained show that the coupled structure presents a very good mass sensitivity thanks to the nanowire, where the mass depositions take place, while also presenting a very good frequency resolution due to the microcantilever, where the transduction is carried out. A two-fold improvement in mass sensitivity with respect to that of the microcantilever standalone is experimentally demonstrated, and at least an order-of-magnitude improvement is theoretically predicted, only changing the nanowire length. Very close frequency resolutions are experimentally measured and theoretically predicted for a standalone microcantilever and for a microcantilever-nanowire coupled system. Thus, an improvement in mass sensing resolution of the microcantilever-nanowire stepped cantilever is demonstrated with respect to that of the microcantilever standalone.

4.
Nano Lett ; 12(2): 932-7, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22268657

RESUMO

The optomechanical coupling that emerges in an optical cavity in which one of the mirrors is a mechanical resonator has allowed sub-Kelvin cooling with the prospect of observing quantum phenomena and self-sustained oscillators with very high spectral purity. Both applications clearly benefit from the use of the smallest possible mechanical resonator. Unfortunately, the optomechanical coupling largely decays when the size of the mechanical system is below the light wavelength. Here, we propose to exploit the optical resonances associated to the light confinement in subwavelength structures to circumvent this limitation, efficiently extending optomechanics to nanoscale objects. We demonstrate this mechanism with suspended silicon nanowires. We are able to optically cool the mechanical vibration of the nanowires from room temperature to 30-40 K or to obtain regenerative mechanical oscillation with a frequency stability of about one part per million. The reported optomechanical phenomena can be exploited for developing cost-optimized mass sensors with sensitivities in the zeptogram range.


Assuntos
Sistemas Microeletromecânicos , Nanofios/química , Silício/química , Campos Eletromagnéticos , Temperatura
5.
ACS Appl Mater Interfaces ; 15(50): 57992-58002, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37991460

RESUMO

Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials.

6.
ACS Appl Mater Interfaces ; 15(50): 57928-57940, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37314734

RESUMO

In this work, block copolymer lithography and ultralow energy ion implantation are combined to obtain nanovolumes with high concentrations of phosphorus atoms periodically disposed over a macroscopic area in a p-type silicon substrate. The high dose of implanted dopants grants a local amorphization of the silicon substrate. In this condition, phosphorus is activated by solid phase epitaxial regrowth (SPER) of the implanted region with a relatively low temperature thermal treatment preventing diffusion of phosphorus atoms and preserving their spatial localization. Surface morphology of the sample (AFM, SEM), crystallinity of the silicon substrate (UV Raman), and position of the phosphorus atoms (STEM- EDX, ToF-SIMS) are monitored during the process. Electrostatic potential (KPFM) and the conductivity (C-AFM) maps of the sample surface upon dopant activation are compatible with simulated I-V characteristics, suggesting the presence of an array of not ideal but working p-n nanojunctions. The proposed approach paves the way for further investigations on the possibility to modulate the dopant distribution within a silicon substrate at the nanoscale by changing the characteristic dimension of the self-assembled BCP film.

7.
ACS Nano ; 15(5): 9005-9016, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33938722

RESUMO

Thermal silicon probes have demonstrated their potential to investigate the thermal properties of various materials at high resolution. However, a thorough assessment of the achievable resolution is missing. Here, we present a probe-based thermal-imaging technique capable of providing sub-10 nm lateral resolution at a sub-10 ms pixel rate. We demonstrate the resolution by resolving microphase-separated PS-b-PMMA block copolymers that self-assemble in 11 to 19 nm half-period lamellar structures. We resolve an asymmetry in the heat flux signal at submolecular dimensions and assess the ratio of heat flux into both polymers in various geometries. These observations are quantitatively compared with coarse-grained molecular simulations of energy transport that reveal an enhancement of transport along the macromolecular backbone and a Kapitza resistance at the internal interfaces of the self-assembled structure. This comparison discloses a tip-sample contact radius of a ≈ 4 nm and identifies combinations of enhanced intramolecular transport and Kapitza resistance.

8.
Nanomaterials (Basel) ; 10(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947950

RESUMO

We present and discuss the capability of grain boundaries to induce order in block copolymer thin films between horizontally and vertically assembled block copolymer grains. The system we use as a proof of principle is a thermally annealed 23.4 nm full-pitch lamellar Polystyrene-block-polymethylmetacrylate (PS-b-PMMA) di-block copolymer. In this paper, grain-boundary-induced alignment is achieved by the mechanical removal of the neutral brush layer via atomic force microscopy (AFM). The concept is also confirmed by a mask-less e-beam direct writing process. An elongated grain of vertically aligned lamellae is trapped between two grains of horizontally aligned lamellae. This configuration leads to the formation of 90° twist grain boundaries. The features maintain their orientation on a characteristic length scale, which is described by the material's correlation length ξ. As a result of an energy minimization process, the block copolymer domains in the vertically aligned grain orient perpendicularly to the grain boundary. The energy-minimizing feature is the grain boundary itself. The width of the manipulated area (e.g., the horizontally aligned grain) does not represent a critical process parameter.

9.
Polymers (Basel) ; 12(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096908

RESUMO

Directed self-assembly of block copolymers is a bottom-up approach to nanofabrication that has attracted high interest in recent years due to its inherent simplicity, high throughput, low cost and potential for sub-10 nm resolution. In this paper, we review the main principles of directed self-assembly of block copolymers and give a brief overview of some of the most extended applications. We present a novel fabrication route based on the introduction of directed self-assembly of block copolymers as a patterning option for the fabrication of nanoelectromechanical systems. As a proof of concept, we demonstrate the fabrication of suspended silicon membranes clamped by dense arrays of single-crystal silicon nanowires of sub-10 nm diameter. Resulting devices can be further developed for building up high-sensitive mass sensors based on nanomechanical resonators.

10.
Nanomaterials (Basel) ; 10(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392901

RESUMO

Micrometer-sized silicon chips have been demonstrated to be cell-internalizable, offering the possibility of introducing in cells even smaller nanoelements for intracellular applications. On the other hand, silicon nanowires on extracellular devices have been widely studied as biosensors or drug delivery systems. Here, we propose the integration of silicon nanowires on cell-internalizable chips in order to combine the functional features of both approaches for advanced intracellular applications. As an initial fundamental study, the cellular uptake in HeLa cells of silicon 3 µm × 3 µm nanowire-based chips with two different morphologies was investigated, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved in all cases; however, important cell behavior differences were observed. In particular, the first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems.

11.
Nanomaterials (Basel) ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290062

RESUMO

This contribution explores different strategies to electrically contact vertical pillars with diameters less than 100 nm. Two process strategies have been defined, the first based on Atomic Force Microscope (AFM) indentation and the second based on planarization and reactive ion etching (RIE). We have demonstrated that both proposals provide suitable contacts. The results help to conclude that the most feasible strategy to be implementable is the one using planarization and reactive ion etching since it is more suitable for parallel and/or high-volume manufacturing processing.

12.
ACS Appl Mater Interfaces ; 11(3): 3571-3581, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30592206

RESUMO

High-density and high-resolution line and space patterns on surfaces are obtained by directed self-assembly of lamella-forming block copolymers (BCPs) using wide-stripe chemical guiding patterns. When the width of the chemical pattern is larger than the half-pitch of the BCP, the interaction energy between each BCP domain and the surface is crucial to obtain the desired segregated film morphology. We investigate how the intermixing between BCPs and polymer brush molecules on the surface influences the optimal surface and interface free energies to obtain a proper BCP alignment. We have found that computational models successfully predict the experimentally obtained guided patterns if the penetrability of the brush layer is taken into account instead of a hard, impenetrable surface. Experiments on directed self-assembly of lamella-forming poly(styrene- block-methyl methacrylate) using chemical guiding patterns corroborate the models used in the simulations, where the values of the surface free energy between the BCP and the guiding and background stripes are accurately determined using an experimental method based on the characterization of contact angles in droplets formed after dewetting of homopolymer blends.

13.
ACS Appl Mater Interfaces ; 6(23): 21596-602, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25360636

RESUMO

The creation of highly efficient guiding patterns for the directed self-assembly of block copolymers by resistless nanolithography using atomic force microscopy (AFM) is demonstrated. It is shown that chemical patterns consisting of arrays of lines defined on a brush layer by AFM allow the alignment of the blocks of lamella-forming polymers. The main advantage of this method relies on the capability to create high-resolution (sub-10 nm line-width) guiding patterns and the reduction of the number of process steps compared to the state-of-the-art methods for creating guiding patterns by chemical surface modification. It is found that the guiding patterns induce the block alignment very efficiently, allowing the achievement of a density multiplication factor of 7 for block copolymers of 14 nm half-pitch, which is attributed to the combined effect of topographical and chemical modification.

14.
Nat Commun ; 5: 4313, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25000256

RESUMO

Highly sensitive conversion of motion into readable electrical signals is a crucial and challenging issue for nanomechanical resonators. Efficient transduction is particularly difficult to realize in devices of low dimensionality, such as beam resonators based on carbon nanotubes or silicon nanowires, where mechanical vibrations combine very high frequencies with miniscule amplitudes. Here we describe an enhanced piezoresistive transduction mechanism based on the asymmetry of the beam shape at rest. We show that this mechanism enables highly sensitive linear detection of the vibration of low-resistivity silicon beams without the need of exceptionally large piezoresistive coefficients. The general application of this effect is demonstrated by detecting multiple-order modes of silicon nanowire resonators made by either top-down or bottom-up fabrication methods. These results reveal a promising approach for practical applications of the simplest mechanical resonators, facilitating its manufacturability by very large-scale integration technologies.

15.
Nat Nanotechnol ; 5(9): 641-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20693990

RESUMO

One-dimensional nanomechanical resonators based on nanowires and nanotubes have emerged as promising candidates for mass sensors. When the resonator is clamped at one end and the atoms or molecules being measured land on the other end (which is free to vibrate), the resonance frequency of the device decreases by an amount that is proportional to the mass of the atoms or molecules. However, atoms and molecules can land at any position along the resonator, and many biomolecules have sizes that are comparable to the size of the resonator, so the relationship between the added mass and the frequency shift breaks down. Moreover, whereas resonators fabricated by top-down methods tend to vibrate in just one dimension because they are usually shaped like diving boards, perfectly axisymmetric one-dimensional nanoresonators can support flexural vibrations with the same amplitude and frequency in two dimensions. Here, we propose a new approach to mass sensing and stiffness spectroscopy based on the fact that the nanoresonator will enter a superposition state of two orthogonal vibrations with different frequencies when this symmetry is broken. Measuring these frequencies allows the mass, stiffness and azimuthal arrival direction of the adsorbate to be determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA