Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 61(4): 520-534, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26853146

RESUMO

Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.


Assuntos
Glutaminase/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Alelos , Processamento Alternativo , Metabolismo Energético , Células HCT116 , Humanos , Neoplasias/genética , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo
2.
Br J Haematol ; 201(4): 718-724, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36786170

RESUMO

Despite the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway being frequently altered in T-ALL/LBL, no specific therapy has been approved for T-ALL/LBL patients with constitutive signalling by JAK/STAT, so there is an urgent need to identify pathway members that may be potential therapeutic targets. In the present study, we searched for JAK/STAT pathway members potentially modulated through aberrant methylation and identified SOCS3 hypermethylation as a recurrent event in T-ALL/LBL. Additionally, we explored the implications of SOCS3 deregulation in T-ALL/LBL and demonstrated that SOCS3 counteracts the constitutive activation of the JAK/STAT pathway through different molecular mechanisms. Therefore, SOCS3 emerges as a potential therapeutic target in T-ALL/LBL.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Janus Quinases/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/metabolismo
3.
Cardiovasc Diabetol ; 22(1): 44, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870961

RESUMO

BACKGROUND: Obesity is a negative chronic metabolic health condition that represents an additional risk for the development of multiple pathologies. Epidemiological studies have shown how maternal obesity or gestational diabetes mellitus during pregnancy constitute serious risk factors in relation to the appearance of cardiometabolic diseases in the offspring. Furthermore, epigenetic remodelling may help explain the molecular mechanisms that underlie these epidemiological findings. Thus, in this study we explored the DNA methylation landscape of children born to mothers with obesity and gestational diabetes during their first year of life. METHODS: We used Illumina Infinium MethylationEPIC BeadChip arrays to profile more than 770,000 genome-wide CpG sites in blood samples from a paediatric longitudinal cohort consisting of 26 children born to mothers who suffered from obesity or obesity with gestational diabetes mellitus during pregnancy and 13 healthy controls (measurements taken at 0, 6 and 12 month; total N = 90). We carried out cross-sectional and longitudinal analyses to derive DNA methylation alterations associated with developmental and pathology-related epigenomics. RESULTS: We identified abundant DNA methylation changes during child development from birth to 6 months and, to a lesser extent, up to 12 months of age. Using cross-sectional analyses, we discovered DNA methylation biomarkers maintained across the first year of life that could discriminate children born to mothers who suffered from obesity or obesity with gestational diabetes. Importantly, enrichment analyses suggested that these alterations constitute epigenetic signatures that affect genes and pathways involved in the metabolism of fatty acids, postnatal developmental processes and mitochondrial bioenergetics, such as CPT1B, SLC38A4, SLC35F3 and FN3K. Finally, we observed evidence of an interaction between developmental DNA methylation changes and maternal metabolic condition alterations. CONCLUSIONS: Our observations highlight the first six months of development as being the most crucial for epigenetic remodelling. Furthermore, our results support the existence of systemic intrauterine foetal programming linked to obesity and gestational diabetes that affects the childhood methylome beyond birth, which involves alterations related to metabolic pathways, and which may interact with ordinary postnatal development programmes.


Assuntos
Diabetes Gestacional , Obesidade Materna , Gravidez , Humanos , Feminino , Criança , Epigenoma , Estudos Transversais , Epigenômica , Obesidade , Epigênese Genética
5.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108826

RESUMO

The transactive response DNA-binding protein (TARDBP/TDP-43) is known to stabilize the anti-HIV-1 factor, histone deacetylase 6 (HDAC6). TDP-43 has been reported to determine cell permissivity to HIV-1 fusion and infection acting on tubulin-deacetylase HDAC6. Here, we studied the functional involvement of TDP-43 in the late stages of the HIV-1 viral cycle. The overexpression of TDP-43, in virus-producing cells, stabilized HDAC6 (i.e., mRNA and protein) and triggered the autophagic clearance of HIV-1 Pr55Gag and Vif proteins. These events inhibited viral particle production and impaired virion infectiveness, observing a reduction in the amount of Pr55Gag and Vif proteins incorporated into virions. A nuclear localization signal (NLS)-TDP-43 mutant was not able to control HIV-1 viral production and infection. Likewise, specific TDP-43-knockdown reduced HDAC6 expression (i.e., mRNA and protein) and increased the expression level of HIV-1 Vif and Pr55Gag proteins and α-tubulin acetylation. Thus, TDP-43 silencing favored virion production and enhanced virus infectious capacity, thereby increasing the amount of Vif and Pr55Gag proteins incorporated into virions. Noteworthy, there was a direct relationship between the content of Vif and Pr55Gag proteins in virions and their infection capacity. Therefore, for TDP-43, the TDP-43/HDAC6 axis could be considered a key factor to control HIV-1 viral production and virus infectiveness.


Assuntos
Proteínas de Ligação a DNA , Produtos do Gene gag , Produtos do Gene gag/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo
6.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685911

RESUMO

HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Citoesqueleto , Microtúbulos , Citoesqueleto de Actina , Filamentos Intermediários
7.
Anal Chem ; 94(18): 6760-6770, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35467835

RESUMO

The accurate detection of nucleic acids from certain biological pathogens is critical for the diagnosis of human diseases. However, amplified detection of RNA molecules from a complex sample by direct detection of RNA/DNA hybrids remains a challenge. Here, we show that type IIS endonuclease FokI is able to digest DNA duplexes and DNA/RNA hybrids when assisted by a dumbbell-like fluorescent sensing oligonucleotide. As proof of concept, we designed a battery of sensing oligonucleotides against specific regions of the SARS-CoV-2 genome and interrogated the role of FokI relaxation as a potential nicking enzyme for fluorescence signal amplification. FokI-assisted digestion of SARS-CoV-2 probes increases the detection signal of ssDNA and RNA molecules and decreases the limit of detection more than 3.5-fold as compared to conventional molecular beacon approaches. This cleavage reaction is highly specific to its target molecules, and no detection of other highly related B-coronaviruses was observed in the presence of complex RNA mixtures. In addition, the FokI-assisted reaction has a high multiplexing potential, as the combined detection of different viral RNAs, including different SARS-CoV-2 variants, was achieved in the presence of multiple combinations of fluorophores and sensing oligonucleotides. When combined with isothermal rolling circle amplification technologies, FokI-assisted digestion reduced the detection time of SARS-CoV-2 in COVID-19-positive human samples with adequate sensitivity and specificity compared to conventional reverse transcription polymerase chain reaction approaches, highlighting the potential of FokI-assisted signal amplification as a valuable sensing mechanism for the detection of human pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , DNA , Digestão , Humanos , Técnicas de Amplificação de Ácido Nucleico , Oligonucleotídeos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
8.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682862

RESUMO

The transactive response DNA-binding protein (TARDBP/TDP-43) influences the processing of diverse transcripts, including that of histone deacetylase 6 (HDAC6). Here, we assessed TDP-43 activity in terms of regulating CD4+ T-cell permissivity to HIV-1 infection. We observed that overexpression of wt-TDP-43 increased both mRNA and protein levels of HDAC6, resulting in impaired HIV-1 infection independently of the viral envelope glycoprotein complex (Env) tropism. Consistently, using an HIV-1 Env-mediated cell-to-cell fusion model, the overexpression of TDP-43 levels negatively affected viral Env fusion capacity. Silencing of endogenous TDP-43 significantly decreased HDAC6 levels and increased the fusogenic and infection activities of the HIV-1 Env. Using pseudovirus bearing primary viral Envs from HIV-1 individuals, overexpression of wt-TDP-43 strongly reduced the infection activity of Envs from viremic non-progressors (VNP) and rapid progressors (RP) patients down to the levels of the inefficient HIV-1 Envs observed in long-term non-progressor elite controllers (LTNP-EC). On the contrary, silencing endogenous TDP-43 significantly favored the infectivity of primary Envs from VNP and RP individuals, and notably increased the infection of those from LTNP-EC. Taken together, our results indicate that TDP-43 shapes cell permissivity to HIV-1 infection, affecting viral Env fusion and infection capacities by altering the HDAC6 levels and associated tubulin-deacetylase anti-HIV-1 activity.


Assuntos
Infecções por HIV , HIV-1 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , HIV-1/fisiologia , Desacetilase 6 de Histona/genética , Humanos , Linfócitos T/metabolismo
9.
Nature ; 523(7559): 177-82, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26106858

RESUMO

Exosomes are lipid-bilayer-enclosed extracellular vesicles that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer-cell-derived exosomes in the circulation is currently lacking. Using mass spectrometry analyses, we identify a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer-cell-derived exosomes. GPC1(+) circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of patients and mice with cancer. GPC1(+) crExos were detected in the serum of patients with pancreatic cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreatic disease from patients with early- and late-stage pancreatic cancer. Levels of GPC1(+) crExos correlate with tumour burden and the survival of pre- and post-surgical patients. GPC1(+) crExos from patients and from mice with spontaneous pancreatic tumours carry specific KRAS mutations, and reliably detect pancreatic intraepithelial lesions in mice despite negative signals by magnetic resonance imaging. GPC1(+) crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreatic cancer to facilitate possible curative surgical therapy.


Assuntos
Exossomos/metabolismo , Glipicanas , Neoplasias Pancreáticas/diagnóstico , Animais , Biomarcadores/sangue , Linhagem Celular Tumoral , Exossomos/genética , Feminino , Glipicanas/sangue , Glipicanas/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Masculino , Camundongos , Células NIH 3T3 , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/metabolismo
10.
Int J Cancer ; 146(2): 373-387, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31211412

RESUMO

Loss of 5-hydroxymethylcytosine (5hmC) has been associated with mutations of the ten-eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild-type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome-wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome-wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome-wide alteration of 5hmC.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Dioxigenases/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Biópsia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Glioblastoma/mortalidade , Glioblastoma/patologia , Código das Histonas/genética , Humanos , Camundongos , Prognóstico , RNA Mensageiro/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Hum Mol Genet ; 27(17): 3046-3059, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878202

RESUMO

Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5-methylcytosine (5mC) in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma.


Assuntos
5-Metilcitosina/análogos & derivados , Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Glioma/patologia , 5-Metilcitosina/metabolismo , Estudos de Casos e Controles , Ilhas de CpG , Glioma/genética , Glioma/metabolismo , Humanos
12.
J Transl Med ; 17(1): 15, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626398

RESUMO

BACKGROUND: Early life is a period of drastic epigenetic remodeling in which the epigenome is especially sensitive to extrinsic and intrinsic influence. However, the epigenome-wide dynamics of the DNA methylation changes that occur during this period have not been sufficiently characterized in longitudinal studies. METHODS: To this end, we studied the DNA methylation status of more than 750,000 CpG sites using Illumina MethylationEPIC arrays on 33 paired blood samples from 11 subjects at birth and at 5 and 10 years of age, then characterized the chromatin context associated with these loci by integrating our data with histone, chromatin-state and enhancer-element external datasets, and, finally, validated our results through bisulfite pyrosequencing in two independent longitudinal cohorts of 18 additional subjects. RESULTS: We found abundant DNA methylation changes (110,726 CpG sites) during the first lustrum of life, while far fewer alterations were observed in the subsequent 5 years (460 CpG sites). However, our analysis revealed persistent DNA methylation changes at 240 CpG sites, indicating that there are genomic locations of considerable epigenetic change beyond immediate birth. The chromatin context of hypermethylation changes was associated with repressive genomic locations and genes with developmental and cell signaling functions, while hypomethylation changes were linked to enhancer regions and genes with immunological and mRNA and protein metabolism functions. Significantly, our results show that genes that suffer simultaneous hyper- and hypomethylation are functionally distinct from exclusively hyper- or hypomethylated genes, and that enhancer-associated methylation is different in hyper- and hypomethylation scenarios, with hypomethylation being more associated to epigenetic changes at blood tissue-specific enhancer elements. CONCLUSIONS: These data show that epigenetic remodeling is dramatically reduced after the first 5 years of life. However, there are certain loci which continue to manifest DNA methylation changes, pointing towards a possible functionality beyond early development. Furthermore, our results deepen the understanding of the genomic context associated to hyper- or hypomethylation alterations during time, suggesting that hypomethylation of blood tissue-specific enhancer elements could be of importance in the establishment of functional states in blood tissue during early-life.


Assuntos
Metilação de DNA/genética , Genoma Humano , Criança , Pré-Escolar , Cromatina/metabolismo , Ilhas de CpG/genética , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Reprodutibilidade dos Testes
13.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
15.
Proc Natl Acad Sci U S A ; 113(3): E328-37, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729869

RESUMO

Nuclear corepressor 1 (NCoR) associates with nuclear receptors and other transcription factors leading to transcriptional repression. We show here that NCoR depletion enhances cancer cell invasion and increases tumor growth and metastatic potential in nude mice. These changes are related to repressed transcription of genes associated with increased metastasis and poor prognosis in patients. Strikingly, transient NCoR silencing leads to heterochromatinization and stable silencing of the NCoR gene, suggesting that NCoR loss can be propagated, contributing to tumor progression even in the absence of NCoR gene mutations. Down-regulation of the thyroid hormone receptor ß1 (TRß) appears to be associated with cancer onset and progression. We found that expression of TRß increases NCoR levels and that this induction is essential in mediating inhibition of tumor growth and metastasis by this receptor. Moreover, NCoR is down-regulated in human hepatocarcinomas and in the more aggressive breast cancer tumors, and its expression correlates positively with that of TRß. These data provide a molecular basis for the anticancer actions of this corepressor and identify NCoR as a potential molecular target for development of novel cancer therapies.


Assuntos
Homeostase , Correpressor 1 de Receptor Nuclear/genética , Idoso , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Heterocromatina/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Receptores beta dos Hormônios Tireóideos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Genome Res ; 25(1): 27-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25271306

RESUMO

In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors.


Assuntos
Envelhecimento/genética , Metilação de DNA , DNA/genética , Células-Tronco/citologia , Adolescente , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Cromatina/genética , Epigênese Genética , Histonas/genética , Humanos , Análise em Microsséries , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Análise de Sequência de DNA , Gêmeos Monozigóticos , Adulto Jovem
17.
Blood ; 137(7): 994-999, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32915956
19.
Rev Med Virol ; 26(3): 146-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26817660

RESUMO

Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/virologia , Viroses/metabolismo , Viroses/virologia , Fenômenos Fisiológicos Virais , Animais , Humanos , Montagem de Vírus , Liberação de Vírus , Replicação Viral
20.
J Transl Med ; 14(1): 160, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27259700

RESUMO

BACKGROUND: Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. METHODS: The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using Illumina(®) Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. RESULTS: DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. CONCLUSIONS: Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention.


Assuntos
Metilação de DNA/genética , Centrômero/metabolismo , Pré-Escolar , Análise por Conglomerados , Ilhas de CpG/genética , Ontologia Genética , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA