RESUMO
Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.
Assuntos
Doenças Autoimunes , Sistema Nervoso Central , Células Dendríticas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ácido Láctico , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/prevenção & controle , Autoimunidade , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Probióticos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Retroalimentação Fisiológica , Lactase/genética , Lactase/metabolismo , Análise de Célula ÚnicaRESUMO
Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1α. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1α/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation.