RESUMO
AIMS: The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS: BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS: HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-ß, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE: Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.
Assuntos
Tecido Adiposo , Citocinas , Animais , Camundongos , Carboidratos da Dieta , Espécies Reativas de Oxigênio , Substâncias Reativas com Ácido Tiobarbitúrico , Dieta , InflamaçãoRESUMO
The renin-angiotensin system (RAS) is a key hormonal system. In recent years, the functional analysis of the novel axis of the RAS (ACE2/Ang-(1-7)/Mas receptor) revealed that its activation can become protective against several pathologies, including cardiovascular diseases. Mas knockout mice (Mas-KO) represent an important tool for new investigations. Indeed, extensive biological research has focused on investigating the functional implications of Mas receptor deletion. However, although the Mas receptor was identified in neonatal cardiomyocytes and also in adult ventricular myocytes, only few reports have explored the Ang-(1-7)/Mas signaling directly in cardiomyocytes to date. This study investigated the implication of Mas receptor knockout to the cytokine profile, energy metabolism, and electrical properties of mice-isolated cardiomyocytes. Here, we demonstrated that Mas-KO mice have modulation in some cytokines, such as G-CSF, IL-6, IL-10, and VEGF in the left ventricle. This model also presents increased mitochondrial number in cardiomyocytes and a reduction in the myocyte diameter. Finally, Mas-KO cardiomyocytes have altered action potential modulation after diazoxide challenge. Such electrical finding was different from the data showed for the TGR(A1-7)3292 (TGR) model, which overexpresses Ang-(1-7) in the plasma by 4.5, used by us as a control. Collectively, our findings exemplify the importance of understanding the ACE2/Ang-(1-7)/Mas pathway in cardiomyocytes and heart tissue. The Mas-KO mice model can be considered an important tool for new RAS investigations.
Assuntos
Enzima de Conversão de Angiotensina 2 , Miócitos Cardíacos , Potenciais de Ação , Angiotensina I/metabolismo , Animais , Citocinas/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologiaRESUMO
Acute Kidney Injury (AKI) comprises a rapidly developed renal failure and is associated with high mortality rates. The Renin-Angiotensin System (RAS) plays a pivotal role in AKI, as the over-active RAS axis exerts major deleterious effects in disease progression. In this sense, the conversion of Angiotensin II (Ang II) into Angiotensin-(1-7) (Ang-(1-7)) by the Angiotensin-converting enzyme 2 (ACE2) is of utmost importance to prevent worse clinical outcomes. Previous studies reported the beneficial effects of oral diminazene aceturate (DIZE) administration, an ACE2 activator, in renal diseases models. In the present study, we aimed to evaluate the therapeutic effects of DIZE administration in experimental AKI induced by gentamicin (GM) in rats. Our findings showed that treatment with DIZE improved renal function and tissue damage by increasing Ang-(1-7) and ACE2 activity, and reducing TNF-α. These results corroborate with a raising potential of ACE2 activation as a strategy for treating AKI.
Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/enzimologia , Enzima de Conversão de Angiotensina 2/metabolismo , Diminazena/análogos & derivados , Ativadores de Enzimas/farmacologia , Gentamicinas/efeitos adversos , Rim/patologia , Substâncias Protetoras/uso terapêutico , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/urina , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Diminazena/farmacologia , Diminazena/uso terapêutico , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Substâncias Protetoras/farmacologia , Ratos Wistar , Sistema Renina-AngiotensinaRESUMO
Human exposure to methylmercury (MeHg) due to contaminated fish intake as part of a high-fat (HFD), high-carbohydrate diets is a reality today for many populations. HFD is associated with hypertension and hyperlipidemia, primary cardiovascular disease (CVD) risk factors. Some studies suggest that MeHg induces those risk factors. We evaluated the effect of MeHg exposure in mice fed with HFD or control diet for eight weeks. In the last experimental 15 days, the half group received a MeHg solution (20 mg/L) replacing water. Blood pressure (BP), heart rate, lipoprotein concentrations, and paraoxonase activity were evaluated. Liver cholesterol, triacylglycerol, and IBA-1+ cells, as well as transcriptional levels of genes related to lipid metabolism and inflammatory response, were also assessed. HFD and both MeHg groups presented increased BP and total cholesterol (TC). In the liver, HFD but not MeHg was related to an increase in TC. Also, MeHg intoxication reduced paraoxonase activity regardless of diet. MeHg intoxication and HFD increased steatosis and the number of IBA-1+ cells and modified some gene transcripts associated with lipid metabolism. In conclusion, we demonstrated that MeHg effects on CVD risk factors resemble those caused by HFD.
Assuntos
Pressão Arterial/efeitos dos fármacos , Aterosclerose/epidemiologia , Dieta Hiperlipídica/efeitos adversos , Poluentes Ambientais/efeitos adversos , Fígado/efeitos dos fármacos , Compostos de Metilmercúrio/efeitos adversos , Estado Nutricional , Animais , Aterosclerose/induzido quimicamente , Fígado Gorduroso/metabolismo , Feminino , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Lipoproteínas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de RiscoRESUMO
NEW FINDINGS: What is the central question of this study? Recently, there have been many studies exploring the biological effects of angiotensin-(1-7), which has been proved to have cardioprotective actions. However, the effects of this peptide on cardiac arrhythmias in vivo and details regarding its mechanism of action are still undetermined. What is the main finding and its importance? We investigated protective effects of angiotensin-(1-7) on cardiac arrhythmias in vivo, which were not properly explored in terms of cellular mechanisms. To verify effects of angiotensin-(1-7), we used different but complementary experimental approaches. Our data provide new evidence on the cellular mechanism and an in vivo demonstration of the acute antiarrhythmic effect of angiotensin-(1-7). Angiotensin-(1-7) [Ang-(1-7)] has been proved to have cardioprotective effects. However, the effects of this peptide on cardiac arrhythmias in vivo and details regarding its mechanism of action are still undetermined. The aim of this study was to investigate the protective effects of Ang-(1-7) against cardiac arrhythmias, its in vivo effects and cellular mechanism of action. We analysed the ECG upon inducement of arrhythmias in vivo in rats using a combination of halothane and adrenaline. To analyse the effects of Ang-(1-7) on cells, fresh mouse ventricular cardiomyocytes were isolated. The cardiomyocytes were superfused with a solution containing halothane and isoprenaline as a model to induce arrhythmias and used in three different approaches, namely a contractility assay, patch-clamp technique and confocal microscopy. The in vivo ECG showed that the injection of Ang-(1-7) (4 nm i.v.) significantly reduced cardiac arrhythmias [before, 49 ± 43 arrhythmic events versus after Ang-(1-7), 16 ± 14 arrhythmic events]. This effect was blocked by injection of A-779 and l-NAME, without changes in haemodynamic parameters. In addition, contractility experiments showed that Ang-(1-7) significantly decreased the number of arrhythmic events without changing the fractional shortening. This protection was associated with a reduction of the action potential repolarization and membrane hyperpolarization. Moreover, Ang-(1-7) decreased the number of calcium waves without any changes in the amplitude of the calcium transient, despite a significant reduction in the decay rate. Our data provide new evidence on the cellular mechanism together with an in vivo demonstration of the antiarrhythmic effects of Ang-(1-7).
Assuntos
Angiotensina I/farmacologia , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Cardiotônicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos WistarRESUMO
OBJECTIVES: The objectives of this study were to assess the effects of hyaluronic acid (HY), multi-walled carbon nanotubes (MWCNT), and MWCNT functionalized with HY (HY-MWCNT) on the resolution of neutrophilic inflammation in the pleural cavity of LPS-challenged mice and to assess the influence of these materials in the inflammatory process of bone repair of tooth sockets of rats. MATERIALS AND METHODS: C57Bl/6 mice were intra-pleurally injected with HY, MWCNT, HY-MWCNT, phosphate-buffered saline (PBS), or LPS. The animals were euthanized after 8 and 24 h, and cells were harvested for total and differential cell counting. The tooth sockets of Wistar rats were filled with HY, MWCNT, HY-MWCNT, or blood clot (control). After 1, 3, and 7 days, histological and morphometric analyses evaluated the number of cell nuclei and blood vessels, and bone trabeculae formation in the sockets. Myeloperoxidase (MPO) activity quantified neutrophil accumulation in the sockets. RESULTS: HY, MWCNT, and HY-MWCNT increased neutrophilic recruitment at 8 h and reduced the inflammatory process at 24 h in the pleural cavity. Histological and morphometric analyses and MPO activity showed no significant differences in the recruitment of inflammatory cells in the tooth sockets. HY increased the number of blood vessels, and HY and HY-MWCNT increased bone trabeculae formation at 7 days of tooth extraction. CONCLUSIONS: HY, MWCNT, and HY-MWCNT resolved the neutrophilic inflammation in the pleural cavity of the mice. However, these materials did not modulate the inflammatory process in the early stages of bone repair of the tooth sockets, thereby excluding this action as a possible mechanism by which these biomaterials accelerate bone repair. CLINICAL RELEVANCE: HY-MWCNT is capable of accelerating bone repair/regeneration without affecting the inflammatory phase during the bone healing process.
Assuntos
Ácido Hialurônico/farmacologia , Leucócitos/metabolismo , Nanotubos de Carbono , Medicina Regenerativa/métodos , Alvéolo Dental/efeitos dos fármacos , Animais , Movimento Celular , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Ratos , Ratos Wistar , Cicatrização/efeitos dos fármacosRESUMO
INTRODUCTION: Drugs that block the renin-angiotensin system (RAS) are widely used for treating hypertension, heart and kidney failure, and the harmful effects of diabetes. Components of the RAS have been identified in various organs, but little is known of their effects on bone remodeling. The aim of this study was to evaluate whether the blockage of the RAS influences strain-induced bone remodeling in a model of orthodontic tooth movement. METHODS: An orthodontic appliance was placed in C57BL6/J mice that were randomly divided into 2 groups: vehicle-treated mice (VH) and mice treated with losartan (an angiotensin II receptor blocker). Orthodontic tooth movement and the number of tartrate-resistant acid phosphatase-positive cells were determined by histopathologic analysis. The expression of mediators involved in bone remodeling was evaluated by quantitative real-time polymerase chain reaction. Blood pressure was measured before and during the experimental period. RESULTS: Orthodontic tooth movement and tartrate-resistant acid phosphatase-positive cells were significantly reduced in the losartan group compared with the VH group. mRNA levels of osteoclast markers (RANK, RANKL, cathepsin K, and metalloproteinase 13) were lower in the losartan mice than in the VH group, whereas the expressions of osteoblast markers and negative regulators of bone resorption (periostin, dentin matrix protein, alkaline phosphatase, collagen 1A1, semaphorin 3A3, metalloproteinase 2, and osteoprotegerin) were higher in the VH group. CONCLUSIONS: Blockage of the RAS system decreases osteoclast differentiation and activity and, consequently, results in decreased strain-induced bone remodeling in orthodontic tooth movement.
Assuntos
Antagonistas de Receptores de Angiotensina/farmacologia , Remodelação Óssea/efeitos dos fármacos , Losartan/farmacologia , Maxila/efeitos dos fármacos , Técnicas de Movimentação Dentária/métodos , Fosfatase Ácida/análise , Fosfatase Alcalina/análise , Animais , Pressão Sanguínea/efeitos dos fármacos , Catepsina K/análise , Moléculas de Adesão Celular/análise , Colágeno Tipo I/análise , Cadeia alfa 1 do Colágeno Tipo I , Proteínas da Matriz Extracelular/análise , Isoenzimas/análise , Masculino , Metaloproteinase 13 da Matriz/análise , Metaloproteinase 2 da Matriz/análise , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoprotegerina/análise , Ligante RANK/análise , Distribuição Aleatória , Receptor Ativador de Fator Nuclear kappa-B/análise , Semaforina-3A/análise , Fosfatase Ácida Resistente a Tartarato , Técnicas de Movimentação Dentária/instrumentaçãoRESUMO
When atrophic jaws compromise oral rehabilitation with conventional implants, narrow-diameter implants can be used. This case report describes treatment of an edentulous 75-year-old diabetic woman with a severely resorbed mandibular ridge. Her mandibular dentition was restored with an overdenture supported by 3 narrow implants and 1 mini implant. Her maxillary dentition was restored with a conventional complete denture. A 6-year clinical and radiographic follow-up confirmed that the narrow implants had provided effective stability for the overdenture, providing improvements in phonetics and masticatory ability at a low cost.
Assuntos
Perda do Osso Alveolar/cirurgia , Prótese Dentária Fixada por Implante/métodos , Revestimento de Dentadura , Idoso , Perda do Osso Alveolar/diagnóstico por imagem , Implantação Dentária Endóssea/métodos , Feminino , Humanos , Mandíbula/cirurgia , Radiografia PanorâmicaRESUMO
Increased energy intake from carbohydrates has been associated with major cardiovascular outcomes. Mice fed a highly-refined carbohydrate (HC) diet develop cardiac hypertrophy and inflammation. During cardiac injury, NLRP3 inflammasome is activated which results in a local inflammatory response. In this study, we hypothesized that a nom-hypoglycemic dose of glibenclamide may reverses sugar diet-induced cardiac damage by NRLP3 inflammasome inhibition. Mice were fed the HC diet for eight weeks and divided into a group treated with glibenclamide (20 mg/kg, gavage) and another with vehicle for four weeks. Afterward, hearts were excised for morphometric analysis and ex vivo function determination. NLRP3 inflammasome activation was investigated by western blotting and in situ fluorescent detection of reactive oxygen species (ROS) and active caspase-1. The HC diet promotes heart hypertrophy and collagen deposition, which were reverted by glibenclamide without ameliorating HC diet-induced insulin resistance. Changes in cardiac performance were observed in vivo by invasive catheterization and in Langendorff-perfused hearts due to the HC diet, which were prevented by glibenclamide. Hearts from HC diet mice had increased levels of NLRP3 and cleaved IL-1ß. Glibenclamide reversed ROS production and caspase-1 activity induced by HC diet. These findings suggest glibenclamide's cardioprotective effects on heart damage caused by the HC diet are related to its inhibitory action on the NLRP3 inflammasome.
RESUMO
Recent data indicate the brain angiotensin-converting enzyme/ANG II/AT1 receptor axis enhances emotional stress responses. In this study, we investigated whether its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/ANG-(1-7)/Mas axis, attenuate the cardiovascular responses to acute emotional stress. In conscious male Wistar rats, the tachycardia induced by acute stress (air jet 10 l/min) was attenuated by intravenous injection of ANG-(1-7) [Δ heart rate (HR): saline 136 ± 22 vs. ANG-(1-7) 61 ± 25 beats/min; P < 0.05]. Peripheral injection of the ACE2 activator compound, XNT, abolished the tachycardia induced by acute stress. We found a similar effect after intracerebroventricular injections of either ANG-(1-7) or XNT. Under urethane anesthesia, the tachycardia evoked by the beta-adrenergic agonist was markedly reduced by ANG-(1-7) [ΔHR: saline 100 ± 16 vs. ANG-(1-7) 18 ± 15 beats/min; P < 0.05]. The increase in renal sympathetic nerve activity (RSNA) evoked by isoproterenol was also abolished after the treatment with ANG-(1-7) [ΔRSNA: saline 39% vs. ANG-(1-7) -23%; P < 0.05]. The tachycardia evoked by disinhibition of dorsomedial hypothalamus neurons, a key nucleus for the cardiovascular response to emotional stress, was reduced by â¼45% after intravenous injection of ANG-(1-7). In cardiomyocyte, the incubation with ANG-(1-7) (1 µM) markedly attenuated the increases in beating rate induced by isoproterenol. Our data show that activation of the ACE2/ANG-(1-7)/Mas axis attenuates stress-induced tachycardia. This effect might be either via the central nervous system reducing anxiety level and/or interfering with the positive chronotropy mediated by activation of cardiac ß adrenergic receptors. Therefore, ANG-(1-7) might contribute to reduce the sympathetic load to the heart during situations of emotional stress, reducing the cardiovascular risk.
Assuntos
Angiotensina I/farmacologia , Hemodinâmica/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Taquicardia/prevenção & controle , Agonistas Adrenérgicos beta/farmacologia , Angiotensina I/administração & dosagem , Enzima de Conversão de Angiotensina 2 , Animais , Pressão Arterial/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Injeções Intravenosas , Injeções Intraventriculares , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Taquicardia/etiologia , Taquicardia/metabolismo , Taquicardia/fisiopatologiaRESUMO
It is well known that the renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cardiovascular diseases. This is well illustrated by the great success of ACE inhibitors and angiotensin (Ang) II AT(1) blockers in the treatment of hypertension and its complications. In the past decade, the classical concept of RAS orchestrated by a series of enzymatic reactions culminating in the linear generation and action of Ang II has expanded and become more complex. From the discoveries of new components such as the angiotensin converting enzyme 2 and the receptor Mas emerged a novel concept of dual opposite branches of the RAS: one vasoconstrictor and pro-hypertensive composed of ACE/Ang II/AT1; and other vasodilator and anti-hypertensive composed of ACE2/Ang-(1-7)/Mas. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular system and highlight the initiatives to develop potential therapeutic strategies based on this axis for treating hypertension.
Assuntos
Angiotensina I/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Hipertensão/fisiopatologia , Fragmentos de Peptídeos/efeitos dos fármacos , Peptidil Dipeptidase A/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina I/fisiologia , Enzima de Conversão de Angiotensina 2 , Humanos , Hipertensão/tratamento farmacológico , Fragmentos de Peptídeos/fisiologia , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/fisiologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologiaRESUMO
Liver test abnormalities are frequently observed in patients with coronavirus disease 2019 (COVID-19) and are associated with worse prognosis. However, information is limited about pathological changes in the liver in this infection, so the mechanism of liver injury is unclear. Here we describe liver histopathology and clinical correlates of 27 patients who died of COVID-19 in Manaus, Brazil. There was a high prevalence of liver injury (elevated alanine aminotransferase and aspartate aminotransferase in 44% and 48% of patients, respectively) in these patients. Histological analysis showed sinusoidal congestion and ischemic necrosis in more than 85% of the cases, but these appeared to be secondary to systemic rather than intrahepatic thrombotic events, as only 14% and 22% of samples were positive for CD61 (marker of platelet activation) and C4d (activated complement factor), respectively. Furthermore, the extent of these vascular findings did not correlate with the extent of transaminase elevations. Steatosis was present in 63% of patients, and portal inflammation was present in 52%. In most cases, hepatocytes expressed angiotensin-converting enzyme 2 (ACE2), which is responsible for binding and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), even though this ectoenzyme was minimally expressed on hepatocytes in normal controls. However, SARS-CoV-2 staining was not observed. Most hepatocytes also expressed inositol 1,4,5-triphosphate receptor 3 (ITPR3), a calcium channel that becomes expressed in acute liver injury. Conclusion: The hepatocellular injury that commonly occurs in patients with severe COVID-19 is not due to the vascular events that contribute to pulmonary or cardiac damage. However, new expression of ACE2 and ITPR3 with concomitant inflammation and steatosis suggests that liver injury may result from inflammation, metabolic abnormalities, and perhaps direct viral injury.
Assuntos
COVID-19/complicações , Hepatopatias/patologia , Hepatopatias/virologia , Fígado/patologia , Fígado/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , COVID-19/mortalidade , COVID-19/patologia , COVID-19/fisiopatologia , Feminino , Humanos , Fígado/fisiopatologia , Hepatopatias/diagnóstico , Hepatopatias/fisiopatologia , Testes de Função Hepática , Masculino , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: The most common treatment for Primary Open-Angle Glaucoma (POAG) is the daily use of eye drops. Sustained-release drug delivery systems have been developed to improve patient adherence by achieving prolonged therapeutic drug concentrations in ocular target tissues while limiting systemic exposure. The purpose of this study is to compare the efficacy and safety of bimatoprost inserts with bimatoprost eye drops in patients with POAG and Ocular Hypertension (OH). METHODS: We include OH and POAG patients aged between 40 and 75 years-old. Both OH and POAG patients had intraocular pressure (IOP) greater than 21 and ≤30 mmHg at 9:00 am without glaucoma medication and normal biomicroscopy. Five normal patients with IOP≤14 mmHg constitute the control group. A chitosan-based insert of bimatoprost was placed at the upper conjunctival fornix of the right eye. In the left eye, patients used one drop of LumiganTM daily at 10:00 pm. For statistical analysis, a two-way analysis of variance (ANOVA), Student t-test, and paired t-test is used. RESULTS: Sixteen POAG and 13 OH patients with a mean age of 61 years were assessed. In both eyes, IOP reduction was similar during three weeks of follow-up (19.5±2.2 mmHg and 16.9±3.1 mmHg), insert, and eye drop, respectively; P=0.165). The percentage of IOP reduction in the third week was 30% for insert and 35% for eye drops (P=0.165). No intolerance or discomfort with the insert was reported. Among the research participants, 58% preferred the use of the insert while 25% preferred eye drops, and 17% reported no preference. CONCLUSION: Bimatoprost-loaded inserts showed similar efficacy to daily bimatoprost eye drops during three weeks of follow up, without major side effects. This might suggest a possible change in the daily therapeutic regimen for the treatment of POAG and OH.
Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Adulto , Idoso , Amidas , Anti-Hipertensivos , Bimatoprost , Glaucoma de Ângulo Aberto/tratamento farmacológico , Humanos , Pressão Intraocular , Pessoa de Meia-Idade , Hipertensão Ocular/tratamento farmacológico , Soluções OftálmicasRESUMO
This study synthesized and characterized a nanohybrid composed of graphene oxide (GO) functionalized with sodium hyaluronate (HY) (GO-HY), evaluated its effect in vitro and determined its osteogenic potential in vivo. The synthesized nanohybrid was analyzed by Scanning electron microscopy (SEM), Raman spectrometry, Thermogravimetry, Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction. MC3T3-E1 cell viability was assessed by MTT assay in 48 and 72 h. Bone defects were created in tibia of 40 Wistar rats and filled with blood clot (control), 1% HY, GO (50, 100 and 200 µg/mL) and the nanohybrid (50, 100 and 200 µg/mL). After 7 and 14 days, histomorphometric analysis was carried out to assess osteogenic potential of the nanohybrid. Immunohistochemical analysis evaluated the expression of vascular endothelial growth factor (VEGF) in bone defects. Thermogravimetric analysis, Raman and FTIR spectrometry confirmed the functionalization of GO with HY by covalent bonds. Five µg/mL concentrations of the nanohybrid did not alter the viability of the MC3T3-E1 cells. Histomorphometric analysis demonstrated that the nanohybrid at 100 µg/mL significantly accelerated the bone repair in tibia of rats when compared to controls (p < 0.01). Immunohistochemical analysis showed a significantly less intense VEGF expression in tibia treated with the nanohybrid when compared to controls (p < 0.05). The nanohybrid composed of GO functionalized with HY was able to induce the acceleration of the tissue regeneration process in bone defects created in the tibia of rats. This novel nanohybrid is a promising material for the field of bone tissue engineering.
Assuntos
Grafite , Ácido Hialurônico , Animais , Grafite/farmacologia , Ácido Hialurônico/farmacologia , Ratos , Ratos Wistar , Tíbia , Fator A de Crescimento do Endotélio VascularRESUMO
OBJECTIVES: Bone resorption associated to chronic diseases, such as arthritis and periodontitis, results from exacerbated immuno-inflammatory host response that leads to tissue breakdown. The significance of opioid pathways as endogenous modulators of inflammatory events has already been described. Thus, the aim of this work is to determine whether some of the main three opioid receptors are endogenously activated to prevent bone loss during experimentally-induced alveolar bone resorption. DESIGN: This study used an experimental model of alveolar bone resorption induced by ligature in rats. A silk thread was placed around the 2nd maxillary molar of male Wistar rats. In the 3rd, 4th and 5th day after ligation the rats received a local injection of different concentrations of opioid antagonists Cyprodime, Naltrindole, or Nor-binaltorphimine, which specifically block mü, delta and kappa opioid receptors, respectively. In the 7th experimental day, rats were euthanized and their maxillae collected for evaluation of alveolar bone and fiber attachment loss, morphometric counting of osteoclasts and osteoblasts, as well as the levels of cytokines IL-1ß, IFN-γ, and IL-6 by ELISA. RESULTS: Selective antagonism of kappa opioid receptors, but not mü and delta, exacerbated alveolar bone resorption induced by ligature in rats. The increased bone loss associated with higher number of osteoclasts surrounding alveolar bone, although osteoblasts' counting remained unchanged. The concentrations of IL-1ß and IL-6 in periodontal tissues were also significantly higher in the rats treated with the kappa antagonist. CONCLUSION: Inhibiting kappa opioid receptors exacerbates alveolar bone resorption.
Assuntos
Perda do Osso Alveolar , Reabsorção Óssea , Antagonistas de Entorpecentes/efeitos adversos , Periodontite , Receptores Opioides , Animais , Citocinas , Modelos Animais de Doenças , Masculino , Morfinanos , Naltrexona/análogos & derivados , Osteoblastos , Osteoclastos , Ratos , Ratos WistarRESUMO
The basolateral amygdala (BLA) is critical in the control of the sympathetic output during stress. Studies demonstrated the involvement of the renin-angiotensin system components in the BLA. Angiotensin-(1-7) [Ang-(1-7)], acting through Mas receptors, reduces stress effects. Considering that angiotensin-converting enzyme 2 (ACE2) is the principal enzyme for the production of Ang-(1-7), here we evaluate the cardiovascular reactivity to acute stress after administration of the ACE2 activator, diminazene aceturate (DIZE) into the BLA. We also tested whether systemic treatment with DIZE could modify synaptic activity in the BLA and its effect directly on the expression of the N-methyl-d-aspartate receptors (NMDARs) in NG108 neurons in-vitro. Administration of DIZE into the BLA (200 pmol/100 nL) attenuated the tachycardia to stress (ΔHR, bpm: vehicle = 103 ± 17 vs DIZE = 49 ± 7 p = 0.018); this effect was inhibited by Ang-(1-7) antagonist, A-779 (ΔHR, bpm: DIZE = 49 ± 7 vs A-779 + DIZE = 100 ± 15 p = 0.04). Systemic treatment with DIZE attenuated the excitatory synaptic activity in the BLA (Frequency (Hz): vehicle = 2.9 ± 0.4 vs. DIZE =1.8 ± 0.3 p < 0.04). NG108 cells treated with DIZE demonstrated decreased expression of l subunit NMDAR-NR1 (NR1 expression (a.u): control = 0.534 ± 0.0593 vs. DIZE = 0.254 ± 0.0260) of NMDAR and increases of Mas receptors expression. These data demonstrate that DIZE attenuates the tachycardia evoked by acute stress. This effect results from a central action in the BLA involving activation of Mas receptors. The ACE2 activation via DIZE treatment attenuated the frequency of excitatory synaptic activity in the basolateral amygdala and this effect can be related with the decreases of the NMDAR-NR1 receptor expression.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Diminazena/análogos & derivados , Ácido Glutâmico/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Taquicardia/metabolismo , Angiotensina I/antagonistas & inibidores , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Diminazena/farmacologia , Neurônios/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
AIM: This study determined the optimum gamma irradiation dosage to sterilize sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and CNT functionalized with HY (HY-SWCNT and HY-MWCNT), evaluated the structural integrity of the materials and assessed whether sterilized materials kept biological properties without affecting renal function. MAIN METHODS: Materials were submitted to dosages of 100 gγ to 30 Kgγ and plated onto agar mediums for colony forming units (CFUs) counting. Sterilized samples were inoculated with 107Bacillus clausii, submitted again to gamma irradiation, and plated in agar mediums for CFUs counting. Scanning electron microscope was used for structural evaluation of sterilized materials. Tooth sockets of rats were treated with sterilized materials for bone formation assessment and renal function of the animals was analyzed. KEY FINDINGS: The optimum gamma dosage for sterilization was 250 gγ for HY and 2.5 Kgγ for the other materials without meaningful structural changes. Sterilized materials significantly increased bone formation (p < 0.05) and they did not compromise renal function and structure. SIGNIFICANCE: Gamma irradiation efficiently sterilized HY, SWCNT, MWCNT, HY-SWCNT and HY-MWCNT without affecting structural aspects while maintaining their desirable biological properties.
Assuntos
Materiais Dentários/efeitos da radiação , Raios gama , Ácido Hialurônico/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Osteogênese/efeitos dos fármacos , Alvéolo Dental/efeitos dos fármacos , Animais , Bacillus clausii/efeitos da radiação , Contagem de Colônia Microbiana , Materiais Dentários/química , Materiais Dentários/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Testes de Função Renal , Masculino , Dente Molar/cirurgia , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Ratos , Ratos Wistar , Esterilização/métodos , Extração Dentária/métodos , Alvéolo Dental/microbiologia , Alvéolo Dental/fisiologia , Alvéolo Dental/cirurgia , Cicatrização/efeitos dos fármacosRESUMO
The renin-angiotensin system (RAS), aside its classical hormonal properties, has been implicated in the pathogenesis of inflammatory disorders. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor (ACE2/Ang-(1-7)/MasR) axis owns anti-inflammatory properties and was recently associated with bone remodeling in osteoporosis. Thus, the aim of this study was to characterize the presence and effects of the ACE2/Ang-(1-7)/MasR axis in osteoblasts and osteoclasts in vitro and in vivo. ACE2 and MasR were detected by qPCR and western blotting in primary osteoblast and osteoclast cell cultures. Cells were incubated with different concentrations of Ang-(1-7), diminazene aceturate (DIZE - an ACE2 activator), A-779 (MasR antagonist) and/or LPS in order to evaluate osteoblast alkaline phosphatase and mineralized matrix, osteoclast differentiation and cytokine expression, and mRNA levels of osteoblasts and osteoclasts markers. An experimental model of alveolar bone resorption triggered by dysbiosis in rats was used to evaluate bone remodeling in vivo. Rats were treated with Ang-(1-7), DIZE and/or A-779 and periodontal samples were collected for immunohistochemistry, morphometric analysis, osteoblast and osteoclast count and cytokine evaluation. Human gingival samples from healthy and periodontitis patients were also evaluated for detection of ACE2 and MasR expression. Osteoblasts and osteoclasts expressed ACE2 and MasR in vitro and in vivo. LPS stimulation or alveolar bone loss induction reduced ACE2 expression. Treatment of bone cells with Ang-(1-7) or DIZE stimulated osteoblast ALP, matrix synthesis, upregulated osterix, osteocalcin and collagen type 1 transcription, reduced IL-6 expression, and decreased osteoclast differentiation, RANK and IL-1ß mRNA transcripts, and IL-6 and IL-1ß levels, in a MasR-dependent manner. In vivo, Ang-(1-7) and DIZE decreased alveolar bone loss through improvement of osteoblast/osteoclast ratio. A-779 reversed such phenotype. ACE2/Ang-(1-7)/MasR axis activation reduced IL-6 expression, but not IL-1ß. ACE2 and MasR were also detected in human gingival samples, with higher expression in the healthy than in the inflamed tissues. These findings show that the ACE2/Ang-(1-7)/MasR is an active player in alveolar bone remodeling.
Assuntos
Angiotensina I/metabolismo , Remodelação Óssea/fisiologia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Processo Alveolar/metabolismo , Angiotensina I/genética , Enzima de Conversão de Angiotensina 2 , Animais , Animais Recém-Nascidos , Western Blotting , Remodelação Óssea/genética , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Fragmentos de Peptídeos/genética , Peptidil Dipeptidase A/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiologiaRESUMO
BACKGROUND: Angiotensin Converting Enzyme (ACE) 2 is an important modulator of the Renin Angiotensin System (RAS) and the RAS plays a central role in renovascular hypertension. Very few studies investigated the role of components of the counterregulatory RAS axis (ACE2, Ang-(1-7) and Mas receptor) in renovascular hypertension and the results are controversial. OBJECTIVE: The aim of this study was to investigate the effects of Diminazene Aceturate (DIZE) administration on renal function and renal inflammation parameters in 2K1C hypertensive rats. METHODS: Male Wistar rats were divided into three experimental groups: sham-operated animals, 2K1C+saline and 2K1C+DIZE orally (1 mg/kg/day). At the end of the 30 days of treatment, renal function was analyzed and kidneys from all the groups were collected and processed separately for measurement of N-acetyl-beta-D-glucosaminidase (NAG) and Myeloperoxidase (MPO) activities, cytokines, chemokines and nitric oxide levels. RESULTS: Oral DIZE administration for 4 weeks in hypertensive rats attenuated renal dysfunction and reduced the levels of MPO and NAG, cytokines and chemokines (IL1ß, IL-6, TNF-α and MCP-1) and increased urinary nitrate/nitrite levels in 2K1C hypertensive rats. CONCLUSION: Our findings showed that ACE2 activation may effectively improve renal alterations and inflammation induced by renovascular hypertension.
Assuntos
Diminazena/análogos & derivados , Ativadores de Enzimas/farmacologia , Hipertensão Renovascular/tratamento farmacológico , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Acetilglucosaminidase/metabolismo , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Citocinas/metabolismo , Diminazena/farmacologia , Diminazena/uso terapêutico , Ativadores de Enzimas/uso terapêutico , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/metabolismo , Peroxidase/metabolismo , Ratos WistarRESUMO
AIMS: To investigate the effects of moderate aerobic physical training on cardiac function and morphology as well as on the levels of glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) of animals infected with the Y strain of Trypanosoma cruzi. MAIN METHODS: Twenty-eight male C57BL/6 mice were distributed into 4 groups: sedentary control (SC), trained control (TC), sedentary infected (CHC) and trained infected (CHT). The infection was performed by intraperitoneal injection of trypomastigote forms and the animals were adapted to treadmill in the week before the beginning of the training protocol, initiated 45â¯days post infection. Maximal exercise test (TEM) was performed at the baseline as well as at the end of the 4th, 8th and 12th weeks of training. At the end of the 12th week, all animals were evaluated for cardiac morphology and function by echocardiography. KEY FINDINGS: CHC group showed a larger area of right ventricle (RVA), increased end-systolic volume and reduction in ejection fraction (EF), stroke volume (SV), cardiac output (CO) and fractional area change (FAC). The training reduced the RVA and improved the FAC of chagasic animals. GDNF level was higher in TC and CHC groups compared to SC in heart and BDNF levels were higher in CHC compared to SC in heart and serum. SIGNIFICANCE: Physical training ameliorated the cardiac function of infected animals and promoted adjusts in BDNF and GDNF levels. These findings evidenced these neurotrophins as possible biomarkers of cardiac function responsive to exercise stimulus.