RESUMO
BACKGROUND: Malarial infections are often missed by microscopy, and most parasite carriers are asymptomatic in low-endemicity settings. Whether parasite detectability and its ability to elicit symptoms change as transmission declines remains unclear. METHODS: We performed a prospective panel survey with repeated measurements on the same participants over 12 months to investigate whether Plasmodium vivax detectability by microscopy and risk of symptoms upon infection varied during a community-wide larviciding intervention in the Amazon basin of Brazil that markedly reduced vector density. We screened 1096 to 1400 residents in the intervention site for malaria by microscopy and quantitative TaqMan assays at baseline and twice during intervention. RESULTS: We found that more P vivax infections than expected from their parasite densities measured by TaqMan assays were missed by microscopy as transmission decreased. At lower transmission, study participants appeared to tolerate higher P vivax loads without developing symptoms. We hypothesize that changes in the ratio between circulating parasites and those that accumulate in the bone marrow and spleen, by avoiding peripheral blood microscopy detection, account for decreased parasite detectability and lower risk of symptoms under low transmission. CONCLUSIONS: P vivax infections are more likely to be subpatent and remain asymptomatic as malaria transmission decreases.
Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Malária Vivax/parasitologia , Brasil/epidemiologia , Estudos Prospectivos , Malária Falciparum/parasitologia , Prevalência , Plasmodium vivax , Plasmodium falciparumRESUMO
Malaria is increasingly diagnosed in urban centers across the Amazon Basin. In this study, we combined repeated prevalence surveys over a 4-year period of a household-based random sample of 2,774 persons with parasite genotyping to investigate the epidemiology of malaria in Mâncio Lima, the main urban transmission hotspot in Amazonian Brazil. We found that most malarial infections were asymptomatic and undetected by point-of-care microscopy. Our findings indicate that as malaria transmission decreases, the detection threshold of microscopy rises, resulting in more missed infections despite similar parasite densities estimated by molecular methods. We identified genetically highly diverse populations of Plasmodium vivax and P. falciparum in the region; occasional shared lineages between urban and rural residents suggest cross-boundary propagation. The prevalence of low-density and asymptomatic infections poses a significant challenge for routine surveillance and the effectiveness of malaria control and elimination strategies in urbanized areas with readily accessible laboratory facilities.
Assuntos
Microscopia , Brasil/epidemiologia , Humanos , Prevalência , Microscopia/métodos , Feminino , Masculino , Adulto , Adolescente , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Criança , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária/epidemiologia , Malária/transmissão , Malária/prevenção & controle , Malária/parasitologia , Plasmodium vivax/genética , População Urbana , Pré-Escolar , Plasmodium falciparum/genética , Pessoa de Meia-Idade , Adulto Jovem , Lactente , História do Século XXIRESUMO
Regulatory and effector cell responses to Plasmodium vivax, the most common human malaria parasite outside Africa, remain understudied in naturally infected populations. Here, we describe peripheral CD4+ T- and B-cell populations during and shortly after an uncomplicated P. vivax infection in 38 continuously exposed adult Amazonians. Consistent with previous observations, we found an increased frequency in CD4+ CD45RA- CD25+ FoxP3+ T regulatory cells that express the inhibitory molecule CTLA-4 during the acute infection, with a sustained expansion of CD21- CD27- atypical memory cells within the CD19+ B-cell compartment. Both Th1- and Th2-type subsets of CXCR5+ ICOShi PD-1+ circulating T follicular helper (cTfh) cells, which are thought to contribute to antibody production, were induced during P. vivax infection, with a positive correlation between overall cTfh cell frequency and IgG antibody titers to the P. vivax blood-stage antigen MSP119 . We identified significant changes in cell populations that had not been described in human malaria, such as an increased frequency of CTLA-4+ T follicular regulatory cells that antagonize Tfh cells, and a decreased frequency of circulating CD24hi CD27+ B regulatory cells in response to acute infection. In conclusion, we disclose a complex immunoregulatory network that is critical to understand how naturally acquired immunity develops in P. vivax malaria.
Assuntos
Malária Vivax , Plasmodium vivax , Adulto , Humanos , Plasmodium vivax/fisiologia , Antígeno CTLA-4 , Linfócitos T Auxiliares-Indutores , Linfócitos T CD4-PositivosRESUMO
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Assuntos
Interações Hospedeiro-Parasita/imunologia , Imunidade , Malária Vivax/imunologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Imunidade Adaptativa , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Parasita/genética , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Vacinas Antimaláricas/imunologia , Malária Vivax/genética , Malária Vivax/metabolismo , Plasmodium vivax/crescimento & desenvolvimento , Receptores Toll-Like/metabolismoRESUMO
We adapted the RNA FISH Stellaris method to specifically detect the expression of Plasmodium genes by flow cytometry and ImageStream (Flow-FISH). This new method accurately quantified the erythrocytic forms of (1) Plasmodium falciparum and Plasmodium vivax and (2) the sexual stages of P vivax from patient isolates. ImageStream analysis of liver stage sporozoites using a combination of surface circumsporozoite protein (CSP), deoxyribonucleic acid, and 18S RNA labeling proved that the new Flow-FISH is suitable for gene expression studies of transmission stages. This powerful multiparametric single-cell method offers a platform of choice for both applied and fundamental research on the biology of malaria parasites.
Assuntos
Malária , Esporozoítos , Animais , Expressão Gênica , Humanos , Malária/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , RNARESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant has been hypothesized to cause more severe illness than previous variants, especially in children. Successive SARS-CoV-2 IgG serosurveys in the Brazilian Amazon showed that age-specific attack rates and proportions of symptomatic SARS-CoV-2 infections were similar before and after Gamma variant emergence.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Brasil/epidemiologia , Criança , HumanosRESUMO
Individual variation in susceptibility and exposure is subject to selection by natural infection, accelerating the acquisition of immunity, and reducing herd immunity thresholds and epidemic final sizes. This is a manifestation of a wider population phenomenon known as "frailty variation". Despite theoretical understanding, public health policies continue to be guided by mathematical models that leave out considerable variation and as a result inflate projected disease burdens and overestimate the impact of interventions. Here we focus on trajectories of the coronavirus disease (COVID-19) pandemic in England and Scotland until November 2021. We fit models to series of daily deaths and infer relevant epidemiological parameters, including coefficients of variation and effects of non-pharmaceutical interventions which we find in agreement with independent empirical estimates based on contact surveys. Our estimates are robust to whether the analysed data series encompass one or two pandemic waves and enable projections compatible with subsequent dynamics. We conclude that vaccination programmes may have contributed modestly to the acquisition of herd immunity in populations with high levels of pre-existing naturally acquired immunity, while being crucial to protect vulnerable individuals from severe outcomes as the virus becomes endemic.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Imunidade Coletiva , Pandemias/prevenção & controle , VacinaçãoRESUMO
BACKGROUND: The population history of Plasmodium simium, which causes malaria in sylvatic Neotropical monkeys and humans along the Atlantic Coast of Brazil, remains disputed. Genetically diverse P vivax populations from various sources, including the lineages that founded the species P simium, are thought to have arrived in the Americas in separate migratory waves. METHODS: We use population genomic approaches to investigate the origin and evolution of P simium. RESULTS: We find a minimal genome-level differentiation between P simium and present-day New World P vivax isolates, consistent with their common geographic origin and subsequent divergence on this continent. The meagre genetic diversity in P simium samples from humans and monkeys implies a recent transfer from humans to non-human primates - a unique example of malaria as a reverse zoonosis of public health significance. Likely genomic signatures of P simium adaptation to new hosts include the deletion of >40% of a key erythrocyte invasion ligand, PvRBP2a, which may have favored more efficient simian host cell infection. CONCLUSIONS: New World P vivax lineages that switched from humans to platyrrhine monkeys founded the P simium population that infects nonhuman primates and feeds sustained human malaria transmission in the outskirts of major cities.
Assuntos
Zoonoses Bacterianas , Metagenômica , Doenças dos Macacos/parasitologia , Plasmodium/genética , Animais , Brasil , Haplorrinos , Malária , Plasmodium/classificação , Plasmodium vivax , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mortality. METHODS: We tested whether serologically proven prior DENV infection diagnosed in September-October 2019, before the coronavirus disease 2019 (COVID-19) pandemic, reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months in a population-based cohort in Amazonian Brazil. Mixed-effects multiple logistic regression analysis was used to identify predictors of infection and disease, adjusting for potential individual and household-level confounders. Virus genomes from 14 local SARS-CoV-2 isolates were obtained using whole-genome sequencing. RESULTS: Anti-DENV immunoglobulin G (IgG) was found in 37.0% of 1285 cohort participants (95% confidence interval [CI]: 34.3% to 39.7%) in 2019, with 10.4 (95% CI: 6.7-15.5) seroconversion events per 100 person-years during the follow-up. In 2020, 35.2% of the participants (95% CI: 32.6% to 37.8%) had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives (95% CI: 52.4% to 61.8%) reported clinical manifestations at the time of infection. Participants aged >60 years were twice more likely to have symptomatic COVID-19 than children under 5 years. Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage. Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection, with P values between .025 and .039 after adjustment for identified confounders. CONCLUSIONS: Higher risk of clinically apparent COVID-19 among individuals with prior dengue has important public health implications for communities sequentially exposed to DENV and SARS-CoV-2 epidemics.
Assuntos
COVID-19 , Dengue , Brasil/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Dengue/epidemiologia , Humanos , Pandemias , SARS-CoV-2RESUMO
The overall malaria burden in the Americas has decreased dramatically over the past two decades, but residual transmission pockets persist across the Amazon Basin, where Plasmodium vivax is the predominant infecting species. Current elimination efforts require a better quantitative understanding of malaria transmission dynamics for planning, monitoring, and evaluating interventions at the community level. This can be achieved with mathematical models that properly account for risk heterogeneity in communities approaching elimination, where few individuals disproportionately contribute to overall malaria prevalence, morbidity, and onwards transmission. Here we analyse demographic information combined with routinely collected malaria morbidity data from the town of Mâncio Lima, the main urban transmission hotspot of Brazil. We estimate the proportion of high-risk subjects in the host population by fitting compartmental susceptible-infected-susceptible (SIS) transmission models simultaneously to age-stratified vivax malaria incidence densities and the frequency distribution of P. vivax malaria attacks experienced by each individual over 12 months. Simulations with the best-fitting SIS model indicate that 20% of the hosts contribute 86% of the overall vivax malaria burden. Despite the low overall force of infection typically found in the Amazon, about one order of magnitude lower than that in rural Africa, high-risk individuals gradually develop clinical immunity following repeated infections and eventually constitute a substantial infectious reservoir comprised of asymptomatic parasite carriers that is overlooked by routine surveillance but likely fuels onwards malaria transmission. High-risk individuals therefore represent a priority target for more intensive and effective interventions that may not be readily delivered to the entire community.
Assuntos
Malária Vivax/epidemiologia , Malária/epidemiologia , Brasil/epidemiologia , Simulação por Computador , Feminino , Humanos , Incidência , Malária Falciparum/epidemiologia , Malária Vivax/parasitologia , Malária Vivax/transmissão , Masculino , Modelos Teóricos , Plasmodium falciparum , Plasmodium vivax/patogenicidade , PrevalênciaRESUMO
Plasmodium vivax invasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the P. vivax Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some P. vivax-exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit P. vivax reticulocyte invasion, and Ab levels correlate with protection against P. vivax malaria. To better understand the functional characteristics and fine specificity of protective human Abs to DBPII, we sorted single DBPII-specific IgG+ memory B cells from three individuals with high blocking activity to DBPII. We identified 12 DBPII-specific human mAbs from distinct lineages that blocked DBPII-DARC binding. All mAbs were P. vivax strain transcending and targeted known binding motifs of DBPII with DARC. Eleven mAbs competed with each other for binding, indicating recognition of the same or overlapping epitopes. Naturally acquired blocking Abs to DBPII from individuals with high levels residing in different P. vivax-endemic areas worldwide competed with mAbs, suggesting broadly shared recognition sites. We also found that mAbs inhibited P. vivax entry into reticulocytes in vitro. These findings suggest that IgG+ memory B cell activity in individuals with P. vivax strain-transcending Abs to DBPII display a limited clonal response with inhibitory blocking directed against a distinct region of the molecule.
Assuntos
Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Linfócitos B/imunologia , Memória Imunológica , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Antígenos de Protozoários/imunologia , Linfócitos B/patologia , Feminino , Humanos , Malária Vivax/patologia , Malária Vivax/prevenção & controle , Masculino , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologiaRESUMO
BACKGROUND: A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. RESULTS: We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. CONCLUSIONS: Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Software , Núcleo Celular , Humanos , Plasmodium vivax/crescimento & desenvolvimentoRESUMO
BACKGROUND: There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. METHODS AND FINDINGS: A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0-29.0 years; range = 0-80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9-33.4) after AL, 14.1% (95% CI 10.8-18.3) after AA, 7.4% (95% CI 6.7-8.1) after AM, and 4.5% (95% CI 3.9-5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6-43.3), 42.4% (95% CI 34.7-51.2), 22.8% (95% CI 21.2-24.4), and 12.8% (95% CI 11.4-14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0-19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6-8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4-3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0-1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4-2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. CONCLUSIONS: In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably between geographical areas.
Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Vivax/tratamento farmacológico , Plasmodium vivax/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Adulto JovemRESUMO
BACKGROUND: Disease-tolerance mechanisms limit infection severity by preventing tissue damage; however, the underlying mechanisms in human malaria are still unclear. Tryptophan (TRP), an essential amino acid, is catabolized into tolerogenic metabolites, kynurenines (KYN), by indoleamine 2,3-dioxygenase 1 (IDO1), which can induce Foxp3+ T regulatory cells (Tregs). In this study, we evaluated the relationship of these metabolites with Treg-mediated tolerance induction in acute malaria infections. METHODS: We performed a cross-sectional study that evaluated asymptomatic, symptomatic malaria patients and endemic control patient groups. We assessed plasmatic concentration of cytokines by ELISA. Plasmatic TRP and KYN levels were measured by HPLC. Peripheral T regulatory cells were measured and phenotyped by flow cytometry. RESULTS: The KYN/TRP ratio was significantly elevated in asymptomatic and symptomatic Plasmodium infection, compared to healthy controls. Also, Th1 and Th2 cytokines were elevated in the acute phase of malaria disease. IFN-γ increase in acute phase was positively correlated with the KYN/TRP ratio and KYN elevation was positively correlated with the increase of peripheral FoxP3+ T regulatory cells. CONCLUSIONS: Additional studies are needed not only to identify innate mechanisms that increase tryptophan catabolism but also the role of Tregs in controlling malaria-induced pathology and malaria tolerance by the host.
Assuntos
Cinurenina/sangue , Malária Vivax/imunologia , Plasmodium vivax/fisiologia , Linfócitos T Reguladores/imunologia , Adulto , Estudos Transversais , Feminino , Humanos , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/imunologia , Cinurenina/metabolismo , Masculino , Projetos Piloto , Triptofano/análise , Triptofano/metabolismoRESUMO
Emerging Plasmodium vivax resistance to chloroquine (CQ) may undermine malaria elimination efforts in South America. CQ-resistant P. vivax has been found in the major port city of Manaus but not in the main malaria hot spots across the Amazon Basin of Brazil, where CQ is routinely coadministered with primaquine (PQ) for radical cure of vivax malaria. Here we randomly assigned 204 uncomplicated vivax malaria patients from Juruá Valley, northwestern Brazil, to receive either sequential (arm 1) or concomitant (arm 2) CQ-PQ treatment. Because PQ may synergize the blood schizontocidal effect of CQ and mask low-level CQ resistance, we monitored CQ-only efficacy in arm 1 subjects, who had PQ administered only at the end of the 28-day follow-up. We found adequate clinical and parasitological responses in all subjects assigned to arm 2. However, 2.2% of arm 1 patients had microscopy-detected parasite recrudescences at day 28. When PCR-detected parasitemias at day 28 were considered, response rates decreased to 92.1% and 98.8% in arms 1 and 2, respectively. Therapeutic CQ levels were documented in 6 of 8 recurrences, consistent with true CQ resistance in vivo In contrast, ex vivo assays provided no evidence of CQ resistance in 49 local P. vivax isolates analyzed. CQ-PQ coadministration was not found to potentiate the antirelapse efficacy of PQ over 180 days of surveillance; however, we suggest that larger studies are needed to examine whether and how CQ-PQ interactions, e.g., CQ-mediated inhibition of PQ metabolism, modulate radical cure efficacy in different P. vivax-infected populations. (This study has been registered at ClinicalTrials.gov under identifier NCT02691910.).
Assuntos
Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Malária Vivax/tratamento farmacológico , Plasmodium vivax/patogenicidade , Primaquina/uso terapêutico , Adolescente , Adulto , Idoso , Brasil , Criança , Pré-Escolar , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/efeitos dos fármacos , Resultado do Tratamento , Adulto JovemRESUMO
Malaria pathogenesis is caused by the replication of Plasmodium parasites within the red blood cells (RBCs) of the vertebrate host. This selective pressure has favored the evolution of protective polymorphisms in erythrocyte proteins, a subset of which serve as cognate receptors for parasite invasion ligands. Recently, the generation of RBCs from immortalized hematopoietic stem cells (HSCs) has offered a more tractable system for genetic manipulation and long-term in vitro culture, enabling elucidation of the functional determinants of host susceptibility in vitro. Here we report the generation of an immortalized erythroid progenitor cell line (EJ cells) from as few as 100 000 peripheral blood mononuclear cells. It offers a robust method for the creation of customized model systems from small volumes of peripheral blood. The EJ cell differentiation mirrored erythropoiesis of primary HSCs, yielding orthochromatic erythroblasts and enucleated RBCs after eight days (ejRBCs). The ejRBCs supported invasion by both P. vivax and P. falciparum. To demonstrate the genetic tractability of this system, we used CRISPR/Cas9 to disrupt the Duffy Antigen/Receptor for Chemokines (DARC) gene, which encodes the canonical receptor of P. vivax in humans. Invasion of P. vivax into this DARC-knockout cell line was strongly inhibited providing direct genetic evidence that P. vivax requires DARC for RBC invasion. Further, genetic complementation of DARC restored P. vivax invasion. Taken together, the peripheral blood immortalization method presented here offers the capacity to generate biologically representative model systems for studies of blood-stage malaria invasion from the peripheral blood of donors harboring unique genetic backgrounds, or rare polymorphisms.
Assuntos
Células Precursoras Eritroides , Malária Falciparum , Malária Vivax , Modelos Biológicos , Células-Tronco de Sangue Periférico , Plasmodium falciparum/metabolismo , Plasmodium vivax/metabolismo , Linhagem Celular Transformada , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/parasitologia , Células Precursoras Eritroides/fisiologia , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Malária Vivax/metabolismo , Malária Vivax/patologia , Células-Tronco de Sangue Periférico/metabolismo , Células-Tronco de Sangue Periférico/parasitologia , Células-Tronco de Sangue Periférico/patologiaRESUMO
Background: Erythrocyte invasion by malaria parasites is essential for blood-stage development. Consequently, parasite proteins critically involved in erythrocyte invasion, such as the Plasmodium vivax reticulocyte binding proteins (RBPs) that mediate preferential invasion of reticulocytes, are considered potential vaccine targets. Thus, targeting the RBPs could prevent blood-stage infection and disease. The RBPs are large, and little is known about their functional domains and whether individuals naturally exposed to P. vivax acquire binding-inhibitory antibodies to these critical binding regions. This study aims to functionally and immunologically characterize Plasmodium vivax RBP1a. Methods: Recombinant proteins of overlapping fragments of RBP1a were used to determine binding specificity to erythrocytes and immunogenicity in laboratory animals. The naturally acquired antibody response to these proteins was evaluated using serum samples from individuals in regions of endemicity. Results: The N-terminal extracellular region, RBP1157-650 (RBP1:F8), was determined to bind both reticulocytes and normocytes, with a preference for immature reticulocytes. Antibodies elicited against rRBP1:F8 blocked binding between RBP1:F8 and erythrocytes. Naturally acquired anti-RBP1 binding-inhibitory antibodies were detected in serum specimens from P. vivax-exposed individuals from Papua New Guinea and Brazil. Conclusion: Recombinant RBP1:F8 binds human erythrocytes, elicits artificially induced functional blocking antibodies, and is a target of naturally acquired binding-inhibitory antibodies.
Assuntos
Malária Vivax/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Eritrócitos/metabolismo , Humanos , Imunogenicidade da Vacina , Ligantes , Malária Vivax/parasitologia , Camundongos Endogâmicos BALB C , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes , Reticulócitos/metabolismo , Organismos Livres de Patógenos EspecíficosRESUMO
Plasmodium vivax chloroquine resistance has been documented in nearly every region where this malaria-causing parasite is endemic. Unfortunately, P. vivax resistance surveillance and drug discovery are challenging due to the low parasitemias of patient isolates and poor parasite survival through ex vivo maturation that reduce the sensitivity and scalability of current P. vivax antimalarial assays. Using cryopreserved patient isolates from Brazil and fresh patient isolates from India, we established a robust enrichment method for P. vivax parasites. We next performed a medium screen for formulations that enhance ex vivo survival. Finally, we optimized an isotopic metabolic labeling assay for measuring P. vivax maturation and its sensitivity to antimalarials. A KCl Percoll density gradient enrichment method increased parasitemias from small-volume ex vivo isolates by an average of >40-fold. The use of Iscove's modified Dulbecco's medium for P. vivax ex vivo culture approximately doubled the parasite survival through maturation. Coupling these with [3H]hypoxanthine metabolic labeling permitted sensitive and robust measurements of parasite maturation, which was used to measure the sensitivities of Brazilian P. vivax isolates to chloroquine and several novel antimalarials. These techniques can be applied to rapidly and robustly assess the P. vivax isolate sensitivities to antimalarials for resistance surveillance and drug discovery.
Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Testes de Sensibilidade Parasitária/métodos , Plasmodium vivax/efeitos dos fármacos , Brasil , Humanos , ÍndiaRESUMO
BACKGROUND: The genetic diversity of malaria antigens often results in allele variant-specific immunity, imposing a great challenge to vaccine development. Rhoptry Neck Protein 2 (PvRON2) is a blood-stage antigen that plays a key role during the erythrocyte invasion of Plasmodium vivax. This study investigates the genetic diversity of PvRON2 and the naturally acquired immune response to P. vivax isolates. RESULTS: Here, the genetic diversity of PvRON21828-2080 and the naturally acquired humoral immune response against PvRON21828-2080 in infected and non-infected individuals from a vivax malaria endemic area in Brazil was reported. The diversity analysis of PvRON21828-2080 revealed that the protein is conserved in isolates in Brazil and worldwide. A total of 18 (19%) patients had IgG antibodies to PvRON21828-2080. Additionally, the analysis of the antibody response in individuals who were not acutely infected with malaria, but had been infected with malaria in the past indicated that 32 patients (33%) exhibited an IgG immune response against PvRON2. CONCLUSIONS: PvRON2 was conserved among the studied isolates. The presence of naturally acquired antibodies to this protein in the absence of the disease suggests that PvRON2 induces a long-term antibody response. These results indicate that PvRON2 is a potential malaria vaccine candidate.
Assuntos
Variação Genética , Imunidade Humoral , Malária Vivax/imunologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Protozoários/imunologia , Análise de Sequência de DNARESUMO
BACKGROUND: Technical limitations for culturing the human malaria parasite Plasmodium vivax have impaired the discovery of vaccine candidates, challenging the malaria eradication agenda. The immunogenicity of the M2 domain of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) antigen cloned from the Plasmodium yoelii murine parasite, has been previously demonstrated. RESULTS: Detailed epitope mapping of MAEBL through immunoinformatics identified several MHCI, MHCII and B cell epitopes throughout the peptide, with several of these lying in the M2 domain and being conserved between P. vivax, P. yoelii and Plasmodium falciparum, hinting that the M2-MAEBL is pan-reactive. This hypothesis was tested through functional assays, showing that P. yoelii M2-MAEBL antisera are able to recognize and inhibit erythrocyte invasion from both P. falciparum and P. vivax parasites isolated from Thai patients, in ex vivo assays. Moreover, the sequence of the M2-MAEBL is shown to be highly conserved between P. vivax isolates from the Amazon and Thailand, indicating that the MAEBL antigen may constitute a vaccine candidate outwitting strain-specific immunity. CONCLUSIONS: The MAEBL antigen is promising candidate towards the development of a malaria vaccine.