Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 70(7): 1299-1308, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33004548

RESUMO

OBJECTIVE: Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions. DESIGN: We used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice. RESULTS: Pectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists. CONCLUSIONS: Improvement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Intestinos/microbiologia , Hepatopatias Alcoólicas/etiologia , Microbiota/fisiologia , Pectinas/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carbazóis/farmacologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/química , Feminino , Humanos , Intestinos/fisiopatologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microbiota/efeitos dos fármacos , Pectinas/uso terapêutico , Prebióticos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética
2.
J Hepatol ; 66(4): 806-815, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27890791

RESUMO

BACKGROUND & AIMS: Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. METHODS: Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. RESULTS: Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. CONCLUSIONS: Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. LAY SUMMARY: Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation.


Assuntos
Disbiose/microbiologia , Disbiose/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/prevenção & controle , Animais , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroides/fisiologia , Ácidos e Sais Biliares/metabolismo , Fibras na Dieta/administração & dosagem , Modelos Animais de Doenças , Suscetibilidade a Doenças/microbiologia , Transplante de Microbiota Fecal , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pectinas/administração & dosagem , Prebióticos/administração & dosagem
3.
J Hepatol ; 64(4): 916-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26639395

RESUMO

BACKGROUND & AIMS: Kupffer cells (KC) play a key role in the onset of inflammation in non-alcoholic steatohepatitis (NASH). The glucocorticoid receptor (GR) induces glucocorticoid-induced leucine zipper (GILZ) expression in monocytes/macrophages and is involved in several inflammatory processes. We hypothesized that the GR-GILZ axis in KC may contribute to the pathophysiology of obesity-induced liver inflammation. METHODS: By using a combination of primary cell culture, pharmacological experiments, mice deficient for the Gr specifically in macrophages and transgenic mice overexpressing Gilz in macrophages, we explored the involvement of the Gr-Gilz axis in KC in the pathophysiology of obesity-induced liver inflammation. RESULTS: Obesity was associated with a downregulation of the Gr and Gilz, and an impairment of Gilz induction by lipopolysaccharide (LPS) and dexamethasone (DEX) in KC. Inhibition of Gilz expression in isolated KC transfected with Gilz siRNA demonstrated that Gilz downregulation was sufficient to sensitize KC to LPS. Conversely, liver inflammation was decreased in obese transgenic mice specifically overexpressing Gilz in macrophages. Pharmacological inhibition of the Gr showed that impairment of Gilz induction in KC by LPS and DEX in obesity was driven by a downregulation of the Gr. In mice specifically deficient for Gr in macrophages, Gilz expression was low, leading to an exacerbation of obesity-induced liver inflammation. CONCLUSIONS: Obesity is associated with a downregulation of the Gr-Gilz axis in KC, which promotes liver inflammation. The Gr-Gilz axis in KC is an important target for the regulation of liver inflammation in obesity.


Assuntos
Hepatite/etiologia , Células de Kupffer/fisiologia , Obesidade/complicações , Receptores de Glucocorticoides/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Dexametasona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
4.
Oncoimmunology ; 12(1): 2237354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492227

RESUMO

Formyl peptide receptor-1 (FPR1) is a pattern recognition receptor that is mostly expressed by myeloid cells. In patients with colorectal cancer (CRC), a loss-of-function polymorphism (rs867228) in the gene coding for FPR1 has been associated with reduced responses to chemotherapy or chemoradiotherapy. Moreover, rs867228 is associated with accelerated esophageal and colorectal carcinogenesis. Here, we show that dendritic cells from Fpr1-/- mice exhibit reduced migration in response to chemotherapy-treated CRC cells. Moreover, Fpr1-/- mice are particularly susceptible to chronic ulcerative colitis and colorectal oncogenesis induced by the mutagen azoxymethane followed by oral dextran sodium sulfate, a detergent that induces colitis. These experiments were performed after initial co-housing of Fpr1-/- mice and wild-type controls, precluding major Fpr1-driven differences in the microbiota. Pharmacological inhibition of Fpr1 by cyclosporin H also tended to increase intestinal oncogenesis in mice bearing the ApcMin mutation, and this effect was reversed by the anti-inflammatory drug sulindac. We conclude that defective FPR1 signaling favors intestinal tumorigenesis through the modulation of the innate inflammatory/immune response.


Assuntos
Colite , Neoplasias Colorretais , Animais , Camundongos , Carcinogênese/genética , Colite/induzido quimicamente , Colite/genética , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Receptores de Formil Peptídeo/genética , Transdução de Sinais
5.
Science ; 380(6649): eabo2296, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289890

RESUMO

Antibiotics (ABX) compromise the efficacy of programmed cell death protein 1 (PD-1) blockade in cancer patients, but the mechanisms underlying their immunosuppressive effects remain unknown. By inducing the down-regulation of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) in the ileum, post-ABX gut recolonization by Enterocloster species drove the emigration of enterotropic α4ß7+CD4+ regulatory T 17 cells into the tumor. These deleterious ABX effects were mimicked by oral gavage of Enterocloster species, by genetic deficiency, or by antibody-mediated neutralization of MAdCAM-1 and its receptor, α4ß7 integrin. By contrast, fecal microbiota transplantation or interleukin-17A neutralization prevented ABX-induced immunosuppression. In independent lung, kidney, and bladder cancer patient cohorts, low serum levels of soluble MAdCAM-1 had a negative prognostic impact. Thus, the MAdCAM-1-α4ß7 axis constitutes an actionable gut immune checkpoint in cancer immunosurveillance.


Assuntos
Antibacterianos , Moléculas de Adesão Celular , Resistencia a Medicamentos Antineoplásicos , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Tolerância Imunológica , Vigilância Imunológica , Integrinas , Mucoproteínas , Neoplasias , Animais , Humanos , Camundongos , Antibacterianos/efeitos adversos , Bactérias/imunologia , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Tolerância Imunológica/efeitos dos fármacos , Integrinas/metabolismo , Interleucina-17/metabolismo , Mucoproteínas/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Células Th17/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia
6.
J Hepatol ; 57(1): 141-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22425624

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is characterized by steatosis associated with liver inflammation. Steatosis causes recruitment of lymphocytes into the liver and this is worsened by lipopolysaccharides (LPS). As macrophages may be involved in the lymphocyte homing, we studied the role of lipids in determining the phenotype of Kupffer cells (KCs) at the stage of steatosis. METHODS: Steatosis was induced in mice by a high fat diet. The turnover and the recruitment of KCs were analyzed in vivo by flow cytometry. KCs phenotype was assessed by optical and electron microscopy, cell culture and lymphocyte recruitment by in vitro chemotaxis. Lipidomic analysis was carried out by mass-spectrometry and gene expression analysis by TaqMan low density array. RESULTS: Although the number of KCs was not modified in steatotic livers compared to normal livers, their phenotypes were different. Electron microscopy demonstrated that the KCs from fatty livers were enlarged and loaded with lipid droplets. Lipid synthesis and trafficking were dysregulated in fat-laden KCs and toxic lipids accumulated. Fat-laden KCs recruited more CD4+ T and B lymphocytes in response to LPS stimulation than did control KCs and produced high levels of pro-inflammatory cytokines/chemokines, which could be reversed by inhibition of lipogenesis. CONCLUSIONS: Lipid accumulation in fat-laden KCs is due to a dysregulation of lipid metabolism and trafficking. Fat-laden KCs are "primed" to recruit lymphocytes and exhibit a pro-inflammatory phenotype, which is reversible with inhibition of lipogenesis.


Assuntos
Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Acetiltransferases/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Carnitina O-Palmitoiltransferase/genética , Diacilglicerol O-Aciltransferase/genética , Gorduras na Dieta/metabolismo , Gorduras na Dieta/toxicidade , Ácido Graxo Sintases/genética , Proteínas de Ligação a Ácido Graxo/genética , Fígado Gorduroso/patologia , Expressão Gênica/fisiologia , Células de Kupffer/patologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Proteínas Nucleares/genética , Obesidade/imunologia , Obesidade/metabolismo , PPAR gama/genética , Fenótipo , Estearoil-CoA Dessaturase/genética , Fatores de Transcrição/genética
7.
Front Nutr ; 9: 928798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034910

RESUMO

The aim of this study was to identify a probiotic-based strategy for maintaining muscle anabolism in the elderly. In previous research, we found that individuals experiencing short bowel syndrome (SBS) after an intestinal resection displayed beneficial metabolic adjustments that were mediated by their gut microbes. Thus, these bacteria could potentially be used to elicit similar positive effects in elderly people, who often have low food intake and thus develop sarcopenia. Gut bacterial strains from an SBS patient were evaluated for their ability to (1) maintain Caenorhabditis elegans survival and muscle structure and (2) promote protein anabolism in a model of frail rodents (18-month-old rats on a food-restricted diet: 75% of ad libitum consumption). We screened a first set of bacteria in C. elegans and selected two Lacticaseibacillus casei strains (62 and 63) for further testing in the rat model. We had four experimental groups: control rats on an ad libitum diet (AL); non-supplemented rats on the food-restricted diet (R); and two sets of food-restricted rats that received a daily supplement of one of the strains (∼109 CFU; R+62 and R+63). We measured lean mass, protein metabolism, insulin resistance, cecal short-chain fatty acids (SCFAs), and SCFA receptor expression in the gut. Food restriction led to decreased muscle mass [-10% vs. AL (p < 0.05)]. Supplementation with strain 63 tempered this effect [-2% vs. AL (p > 0.1)]. The mechanism appeared to be the stimulation of the insulin-sensitive p-S6/S6 and p-eIF2α/eIF2α ratios, which were similar in the R+63 and AL groups (p > 0.1) but lower in the R group (p < 0.05). We hypothesize that greater SCFA receptor sensitivity in the R+63 group promoted gut-muscle cross talk [GPR41: +40% and GPR43: +47% vs. R (p < 0.05)]. Hence, strain 63 could be used in association with other nutritional strategies and exercise regimes to limit sarcopenia in frail elderly people.

9.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296557

RESUMO

BACKGROUND: Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT. METHODS: Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients (Oncobiotic trial) to analyze their feces and blood specimens. RESULTS: In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice or oral gavage with Akkermansia improved the efficacy of ADT. This appears to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared with HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy, feces from PC patients failed to do so. CONCLUSIONS: These findings suggest the potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients.


Assuntos
Microbioma Gastrointestinal , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/uso terapêutico , Animais , Humanos , Sistema Imunitário , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
10.
Cancer Discov ; 12(4): 958-983, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179201

RESUMO

Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Fatores de Restrição Antivirais , COVID-19 , Neoplasias , Linfócitos T , Anticorpos Neutralizantes , Fatores de Restrição Antivirais/imunologia , COVID-19/imunologia , Humanos , Neoplasias/complicações , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia
11.
Cancer Discov ; 12(4): 1128-1151, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930787

RESUMO

Gut dysbiosis has been associated with intestinal and extraintestinal malignancies, but whether and how carcinogenesis drives compositional shifts of the microbiome to its own benefit remains an open conundrum. Here, we show that malignant processes can cause ileal mucosa atrophy, with villous microvascular constriction associated with dominance of sympathetic over cholinergic signaling. The rapid onset of tumorigenesis induced a burst of REG3γ release by ileal cells, and transient epithelial barrier permeability that culminated in overt and long-lasting dysbiosis dominated by Gram-positive Clostridium species. Pharmacologic blockade of ß-adrenergic receptors or genetic deficiency in Adrb2 gene, vancomycin, or cohousing of tumor bearers with tumor-free littermates prevented cancer-induced ileopathy, eventually slowing tumor growth kinetics. Patients with cancer harbor distinct hallmarks of this stress ileopathy dominated by Clostridium species. Hence, stress ileopathy is a corollary disease of extraintestinal malignancies requiring specific therapies. SIGNIFICANCE: Whether gut dysbiosis promotes tumorigenesis and how it controls tumor progression remain open questions. We show that 50% of transplantable extraintestinal malignancies triggered a ß-adrenergic receptor-dependent ileal mucosa atrophy, associated with increased gut permeability, sustained Clostridium spp.-related dysbiosis, and cancer growth. Vancomycin or propranolol prevented cancer-associated stress ileopathy. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Disbiose , Receptores Adrenérgicos beta , Carcinogênese/patologia , Disbiose/induzido quimicamente , Disbiose/complicações , Disbiose/patologia , Humanos , Mucosa Intestinal/patologia , Transdução de Sinais
12.
JHEP Rep ; 3(2): 100230, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665587

RESUMO

BACKGROUND & AIMS: Bile-acid metabolism and the intestinal microbiota are impaired in alcohol-related liver disease. Activation of the bile-acid receptor TGR5 (or GPBAR1) controls both biliary homeostasis and inflammatory processes. We examined the role of TGR5 in alcohol-induced liver injury in mice. METHODS: We used TGR5-deficient (TGR5-KO) and wild-type (WT) female mice, fed alcohol or not, to study the involvement of liver macrophages, the intestinal microbiota (16S sequencing), and bile-acid profiles (high-performance liquid chromatography coupled to tandem mass spectrometry). Hepatic triglyceride accumulation and inflammatory processes were assessed in parallel. RESULTS: TGR5 deficiency worsened liver injury, as shown by greater steatosis and inflammation than in WT mice. Isolation of liver macrophages from WT and TGR5-KO alcohol-fed mice showed that TGR5 deficiency did not increase the pro-inflammatory phenotype of liver macrophages but increased their recruitment to the liver. TGR5 deficiency induced dysbiosis, independently of alcohol intake, and transplantation of the TGR5-KO intestinal microbiota to WT mice was sufficient to worsen alcohol-induced liver inflammation. Secondary bile-acid levels were markedly lower in alcohol-fed TGR5-KO than normally fed WT and TGR5-KO mice. Consistent with these results, predictive analysis showed the abundance of bacterial genes involved in bile-acid transformation to be lower in alcohol-fed TGR5-KO than WT mice. This altered bile-acid profile may explain, in particular, why bile-acid synthesis was not repressed and inflammatory processes were exacerbated. CONCLUSIONS: A lack of TGR5 was associated with worsening of alcohol-induced liver injury, a phenotype mainly related to intestinal microbiota dysbiosis and an altered bile-acid profile, following the consumption of alcohol. LAY SUMMARY: Excessive chronic alcohol intake can induce liver disease. Bile acids are molecules produced by the liver and can modulate disease severity. We addressed the specific role of TGR5, a bile-acid receptor. We found that TGR5 deficiency worsened alcohol-induced liver injury and induced both intestinal microbiota dysbiosis and bile-acid pool remodelling. Our data suggest that both the intestinal microbiota and TGR5 may be targeted in the context of human alcohol-induced liver injury.

13.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33320838

RESUMO

Limited experimental evidence bridges nutrition and cancer immunosurveillance. Here, we show that ketogenic diet (KD) - or its principal ketone body, 3-hydroxybutyrate (3HB), most specifically in intermittent scheduling - induced T cell-dependent tumor growth retardation of aggressive tumor models. In conditions in which anti-PD-1 alone or in combination with anti-CTLA-4 failed to reduce tumor growth in mice receiving a standard diet, KD, or oral supplementation of 3HB reestablished therapeutic responses. Supplementation of KD with sucrose (which breaks ketogenesis, abolishing 3HB production) or with a pharmacological antagonist of the 3HB receptor GPR109A abolished the antitumor effects. Mechanistically, 3HB prevented the immune checkpoint blockade-linked upregulation of PD-L1 on myeloid cells, while favoring the expansion of CXCR3+ T cells. KD induced compositional changes of the gut microbiota, with distinct species such as Eisenbergiella massiliensis commonly emerging in mice and humans subjected to carbohydrate-low diet interventions and highly correlating with serum concentrations of 3HB. Altogether, these results demonstrate that KD induces a 3HB-mediated antineoplastic effect that relies on T cell-mediated cancer immunosurveillance.


Assuntos
Dieta Cetogênica , Corpos Cetônicos/administração & dosagem , Neoplasias Experimentais/dietoterapia , Neoplasias Experimentais/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/metabolismo , Animais , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Corpos Cetônicos/metabolismo , Neoplasias Renais/dietoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Melanoma Experimental/dietoterapia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores
14.
Nat Med ; 27(8): 1432-1441, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239137

RESUMO

Treatment with combined immune checkpoint blockade (CICB) targeting CTLA-4 and PD-1 is associated with clinical benefit across tumor types, but also a high rate of immune-related adverse events. Insights into biomarkers and mechanisms of response and toxicity to CICB are needed. To address this, we profiled the blood, tumor and gut microbiome of 77 patients with advanced melanoma treated with CICB, with a high rate of any ≥grade 3 immune-related adverse events (49%) with parallel studies in pre-clinical models. Tumor-associated immune and genomic biomarkers of response to CICB were similar to those identified for ICB monotherapy, and toxicity from CICB was associated with a more diverse peripheral T-cell repertoire. Profiling of gut microbiota demonstrated a significantly higher abundance of Bacteroides intestinalis in patients with toxicity, with upregulation of mucosal IL-1ß in patient samples of colitis and in pre-clinical models. Together, these data offer potential new therapeutic angles for targeting toxicity to CICB.


Assuntos
Antígeno CTLA-4/imunologia , Microbioma Gastrointestinal , Receptor de Morte Celular Programada 1/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-1beta/imunologia , Melanoma , Camundongos , Camundongos Endogâmicos C57BL
15.
Cell Death Differ ; 28(12): 3297-3315, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34230615

RESUMO

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.


Assuntos
COVID-19/complicações , COVID-19/virologia , Linfopenia/complicações , Neoplasias/complicações , RNA Viral/análise , SARS-CoV-2/genética , Eliminação de Partículas Virais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , DNA Bacteriano/sangue , Enterobacteriaceae/genética , Feminino , Humanos , Interferon Tipo I/sangue , Linfopenia/virologia , Masculino , Micrococcaceae/genética , Pessoa de Meia-Idade , Nasofaringe/virologia , Neoplasias/diagnóstico , Neoplasias/mortalidade , Pandemias , Prognóstico , Fatores de Tempo , Adulto Jovem
16.
Oncoimmunology ; 9(1): 1789284, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923151

RESUMO

Amid controversial reports that COVID-19 can be treated with a combination of the antimalarial drug hydroxychloroquine (HCQ) and the antibiotic azithromycin (AZI), a clinical trial (ONCOCOVID, NCT04341207) was launched at Gustave Roussy Cancer Campus to investigate the utility of this combination therapy in cancer patients. In this preclinical study, we investigated whether the combination of HCQ+AZI would be compatible with the therapeutic induction of anticancer immune responses. For this, we used doses of HCQ and AZI that affect whole-body physiology (as indicated by a partial blockade in cardiac and hepatic autophagic flux for HCQ and a reduction in body weight for AZI), showing that their combined administration did not interfere with tumor growth control induced by the immunogenic cell death inducer oxaliplatin. Moreover, the HCQ+AZI combination did not affect the capacity of a curative regimen (cisplatin + crizotinib + PD-1 blockade) to eradicate established orthotopic lung cancers in mice. In conclusion, it appears that HCQ+AZI does not interfere with the therapeutic induction of therapeutic anticancer immune responses.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Azitromicina/administração & dosagem , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Azitromicina/farmacocinética , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Ensaios Clínicos Fase II como Assunto , Crizotinibe/administração & dosagem , Crizotinibe/farmacocinética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Quimioterapia Combinada/métodos , Feminino , França , Humanos , Hidroxicloroquina/farmacocinética , Camundongos , Neoplasias/imunologia , Oxaliplatina/administração & dosagem , Oxaliplatina/farmacocinética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação
17.
Oncoimmunology ; 9(1): 1794423, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32934888

RESUMO

Accumulating evidence from preclinical studies and human trials demonstrated the crucial role of the gut microbiota in determining the effectiveness of anticancer therapeutics such as immunogenic chemotherapy or immune checkpoint blockade. In summary, it appears that a diverse intestinal microbiota supports therapeutic anticancer responses, while a dysbiotic microbiota composition that lacks immunostimulatory bacteria or contains overabundant immunosuppressive species causes treatment failure. In this review, we explore preclinical and translational studies highlighting how eubiotic and dysbiotic microbiota composition can affect progression-free survival in cancer patients.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Disbiose , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias/tratamento farmacológico , Simbiose
18.
Eur Urol ; 78(2): 195-206, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32376136

RESUMO

BACKGROUND: The development of immune checkpoint blockade (ICB) has revolutionized the clinical outcome of renal cell carcinoma (RCC). Nevertheless, improvement of durability and prediction of responses remain unmet medical needs. While it has been recognized that antibiotics (ATBs) decrease the clinical activity of ICB across various malignancies, little is known about the direct impact of distinct intestinal nonpathogenic bacteria (commensals) on therapeutic outcomes of ICB in RCC. OBJECTIVE: To evaluate the predictive value of stool bacteria composition for ICB efficacy in a cohort of advanced RCC patients. DESIGN, SETTING, AND PARTICIPANTS: We prospectively collected fecal samples from 69 advanced RCC patients treated with nivolumab and enrolled in the GETUG-AFU 26 NIVOREN microbiota translational substudy phase 2 trial (NCT03013335) at Gustave Roussy. We recorded patient characteristics including ATB use, prior systemic therapies, and response criteria. We analyzed 2994 samples of feces from healthy volunteers (HVs). In parallel, preclinical studies performed in RCC-bearing mice that received fecal transplant (FMT) from RCC patients resistant to ICB (NR-FMT) allowed us to draw a cause-effect relationship between gut bacteria composition and clinical outcomes for ICB. The influence of tyrosine kinase inhibitors (TKIs) taken before starting nivolumab on the microbiota composition has also been assessed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Metagenomic data (MG) from whole genome sequencing (WGS) were analyzed by multivariate and pairwise comparisons/fold ratio to identify bacterial fingerprints related to ATB or prior TKI exposure and patients' therapeutic response (overall response and progression-free survival), and compared with the data from cancer-free donors. RESULTS AND LIMITATIONS: Recent ATB use (n = 11; 16%) reduced objective response rates (from 28% to 9%, p < 0.03) and markedly affected the composition of the microbiota, facilitating the dominance of distinct species such as Clostridium hathewayi, which were also preferentially over-represented in stools from RCC patients compared with HVs. Importantly, TKIs taken prior to nivolumab had implications in shifting the microbiota composition. To establish a cause-effect relationship between gut bacteria composition and ICB efficacy, NR-FMT mice were successfully compensated with either FMT from responding RCC patients or beneficial commensals identified by WGS-MG (Akkermansia muciniphila and Bacteroides salyersiae). CONCLUSIONS: The composition of the microbiota is influenced by TKIs and ATBs, and impacts the success of immunotherapy. Future studies will help sharpen the role of these specific bacteria and their potential as new biomarkers. PATIENT SUMMARY: We used quantitative shotgun DNA sequencing of fecal microbes as well as preclinical models of fecal or bacterial transfer to study the association between stool composition and (pre)clinical outcome to immune checkpoint blockade. Novel insights into the pathophysiological relevance of intestinal dysbiosis in the prognosis of kidney cancer may lead to innovative therapeutic solutions, such as supplementation with probiotics to prevent primary resistance to therapy.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/microbiologia , Resistencia a Medicamentos Antineoplásicos , Fezes/microbiologia , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/microbiologia , Nivolumabe/uso terapêutico , Animais , Humanos , Camundongos , Valor Preditivo dos Testes , Estudos Prospectivos
19.
Science ; 369(6506): 936-942, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820119

RESUMO

Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I-binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb-restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti-PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP-cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.


Assuntos
Antígenos de Neoplasias/imunologia , Bacteriófagos/imunologia , Streptococcus faecium ATCC 9790/virologia , Microbioma Gastrointestinal/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Proteínas da Cauda Viral/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas , Ciclofosfamida/uso terapêutico , Epitopos/imunologia , Fezes/virologia , Antígenos H-2/imunologia , Humanos , Camundongos , Neoplasias/dietoterapia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Proteínas da Cauda Viral/uso terapêutico
20.
Nat Med ; 26(6): 919-931, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451498

RESUMO

The prognosis of colon cancer (CC) is dictated by tumor-infiltrating lymphocytes, including follicular helper T (TFH) cells and the efficacy of chemotherapy-induced immune responses. It remains unclear whether gut microbes contribute to the elicitation of TFH cell-driven responses. Here, we show that the ileal microbiota dictates tolerogenic versus immunogenic cell death of ileal intestinal epithelial cells (IECs) and the accumulation of TFH cells in patients with CC and mice. Suppression of IEC apoptosis led to compromised chemotherapy-induced immunosurveillance against CC in mice. Protective immune responses against CC were associated with residence of Bacteroides fragilis and Erysipelotrichaceae in the ileum. In the presence of these commensals, apoptotic ileal IECs elicited PD-1+ TFH cells in an interleukin-1R1- and interleukin-12-dependent manner. The ileal microbiome governed the efficacy of chemotherapy and PD-1 blockade in CC independently of microsatellite instability. These findings demonstrate that immunogenic ileal apoptosis contributes to the prognosis of chemotherapy-treated CC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Microbioma Gastrointestinal/imunologia , Íleo/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Oxaliplatina/farmacologia , Adenocarcinoma/imunologia , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Apoptose/imunologia , Bacteroides fragilis , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Firmicutes , Microbioma Gastrointestinal/fisiologia , Humanos , Íleo/imunologia , Íleo/microbiologia , Íleo/patologia , Morte Celular Imunogênica/efeitos dos fármacos , Morte Celular Imunogênica/imunologia , Vigilância Imunológica/efeitos dos fármacos , Vigilância Imunológica/imunologia , Interleucina-12/imunologia , Mucosa Intestinal , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Oxaliplatina/uso terapêutico , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Tipo I de Interleucina-1/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA