Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283273

RESUMO

BACKGROUND: Peripheral immune cells critically contribute to the clinical-pathological progression of neurodegenerative diseases and also represent a reliable frame for translational applications. However, data on progressive supranuclear palsy (PSP) are almost scarce in this regard. OBJECTIVE: Our goal is to provide a broad biological characterization of peripheral immune cells in a selected PSP cohort. METHODS: Seventy-one PSP patients scored on the PSP Rating Scale (PSPRS), and 59 controls were enrolled. The blood cell count was collected, together with the neutrophil-to-lymphocyte ratio (NLR) calculation. In a subgroup of patients and controls, the peripheral blood mononuclear cells (PBMCs) were analyzed by the mitochondrial bioenergetic performance and the western blot assay of the nuclear factor erythroid 2-related factor (NRF2)/heme oxygenase 1 (HO-1) pathway and the total tau (t-tau) and phosphorylated tau (p-tau) proteins. Case-control comparison and correlation analyses were performed. RESULTS: PSP patients had a NLR higher than controls, with increased circulating neutrophils. The leukocyte metabolism was also globally increased and the NRF2/HO-1 pathway activated in patients. P-tau, but not t-tau, significantly accumulated in PSP PBMCs and inversely correlated with the PSPRS. CONCLUSIONS: PSP displays a systemic inflammatory shift of the peripheral immunity, which may justify a metabolic reprogramming of the blood leukocytes. Consistently, the NRF2/HO-1 pathway, a master regulator of inflammatory and metabolic response, was activated. PBMCs also engulf tau proteins, especially p-tau, in a way inverse to the disease severity, allowing for a peripheral tracking of tauopathy in patients. Immunometabolic targets may, therefore, gain relevance to PSP in biomarker or therapeutic purposes. © 2024 International Parkinson and Movement Disorder Society.

2.
Cell Mol Life Sci ; 80(8): 236, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524863

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult devastating neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), resulting in progressive paralysis and death. Genetic animal models of ALS have highlighted dysregulation of synaptic structure and function as a pathogenic feature of ALS-onset and progression. Alternative pre-mRNA splicing (AS), which allows expansion of the coding power of genomes by generating multiple transcript isoforms from each gene, is widely associated with synapse formation and functional specification. Deciphering the link between aberrant splicing regulation and pathogenic features of ALS could pave the ground for novel therapeutic opportunities. Herein, we found that neural progenitor cells (NPCs) derived from the hSOD1G93A mouse model of ALS displayed increased proliferation and propensity to differentiate into neurons. In parallel, hSOD1G93A NPCs showed impaired splicing patterns in synaptic genes, which could contribute to the observed phenotype. Remarkably, master splicing regulators of the switch from stemness to neural differentiation are de-regulated in hSOD1G93A NPCs, thus impacting the differentiation program. Our data indicate that hSOD1G93A mutation impacts on neurogenesis by increasing the NPC pool in the developing mouse cortex and affecting their intrinsic properties, through the establishment of a specific splicing program.

3.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542223

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is considered the prototype of motor neuron disease, characterized by motor neuron loss and muscle waste. A well-established pathogenic hallmark of ALS is mitochondrial failure, leading to bioenergetic deficits. So far, pharmacological interventions for the disease have proven ineffective. Trimetazidine (TMZ) is described as a metabolic modulator acting on different cellular pathways. Its efficacy in enhancing muscular and cardiovascular performance has been widely described, although its molecular target remains elusive. We addressed the molecular mechanisms underlying TMZ action on neuronal experimental paradigms. To this aim, we treated murine SOD1G93A-model-derived primary cultures of cortical and spinal enriched motor neurons, as well as a murine motor-neuron-like cell line overexpressing SOD1G93A, with TMZ. We first characterized the bioenergetic profile of the cell cultures, demonstrating significant mitochondrial dysfunction that is reversed by acute TMZ treatments. We then investigated the effect of TMZ in promoting autophagy processes and its impact on mitochondrial morphology. Finally, we demonstrated the effectiveness of TMZ in terms of the mitochondrial functionality of ALS-rpatient-derived peripheral blood mononuclear cells (PBMCs). In summary, our results emphasize the concept that targeting mitochondrial dysfunction may represent an effective therapeutic strategy for ALS. The findings demonstrate that TMZ enhances mitochondrial performance in motor neuron cells by activating autophagy processes, particularly mitophagy. Although further investigations are needed to elucidate the precise molecular pathways involved, these results hold critical implications for the development of more effective and specific derivatives of TMZ for ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Mitocondriais , Trimetazidina , Camundongos , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Camundongos Transgênicos , Leucócitos Mononucleares/metabolismo , Superóxido Dismutase/metabolismo , Autofagia , Modelos Animais de Doenças
4.
J Integr Neurosci ; 21(6): 165, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36424753

RESUMO

BACKGROUND: Monoamine oxidase type B inhibitors (iMAO-Bs) are a class of largely-used antiparkinsonian agents that, based on experimental evidence, are supposed to exert different degrees of neuroprotection in Parkinson's disease (PD). However, clinical proofs on this regard are very scarce. Since cerebrospinal fluid (CSF) reflects pathological changes occurring at brain level, we examined the neurodegeneration-related CSF biomarkers profile of PD patients under chronic treatment with different iMAO-Bs to identify biochemical signatures suggestive for differential neurobiological effects. METHODS: Thirty-five PD patients under chronic treatment with different iMAO-Bs in add-on to levodopa were enrolled and grouped in rasagiline (n = 13), selegiline (n = 9), safinamide (n = 13). Respective standard clinical scores for motor and non-motor disturbances, together with CSF biomarkers of neurodegeneration levels (amyloid- ß -42, amyloid- ß -40, total and 181-phosphorylated tau, and lactate) were collected and compared among the three iMAO-B groups. RESULTS: No significant clinical differences emerged among the iMAO-B groups. CSF levels of tau proteins and lactate were instead different, resulting higher in patients under selegiline than in those under rasagiline and safinamide. CONCLUSIONS: Although preliminary and limited, this study indicates that patients under different iMAO-Bs may present distinct profiles of CSF neurodegeneration-related biomarkers, probably because of the differential neurobiological effects of the drugs. Larger studies are now needed to confirm and extend these initial observations.


Assuntos
Inibidores da Monoaminoxidase , Doença de Parkinson , Humanos , Biomarcadores , Lactatos , Doença de Parkinson/tratamento farmacológico , Selegilina/uso terapêutico , Inibidores da Monoaminoxidase/uso terapêutico
5.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142777

RESUMO

Mitochondria are central in the pathogenesis of Parkinson's disease (PD), as they are involved in oxidative stress, synaptopathy, and other immunometabolic pathways. Accordingly, they are emerging as a potential neuroprotection target, although further human-based evidence is needed for therapeutic advancements. This study aims to shape the pattern of mitochondrial respiration in the blood leukocytes of PD patients in relation to both clinical features and the profile of cerebrospinal fluid (CSF) biomarkers of neurodegeneration. Mitochondrial respirometry on the peripheral blood mononucleate cells (PBMCs) of 16 PD patients and 14 controls was conducted using Seahorse Bioscience technology. Bioenergetic parameters were correlated either with standard clinical scores for motor and non-motor disturbances or with CSF levels of α-synuclein, amyloid-ß peptides, and tau proteins. In PD, PBMC mitochondrial basal respiration was normal; maximal and spare respiratory capacities were both increased; and ATP production was higher, although not significantly. Maximal and spare respiratory capacity was directly correlated with disease duration, MDS-UPDRS part III and Hoehn and Yahr motor scores; spare respiratory capacity was correlated with the CSF amyloid-ß-42 to amyloid-ß-42/40 ratio. We provided preliminary evidence showing that mitochondrial respiratory activity increases in the PBMCs of PD patients, probably following the compensatory adaptations to disease progression, in contrast to the bases of the neuropathological substrate.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Trifosfato de Adenosina , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores , Humanos , Leucócitos Mononucleares/patologia , Mitocôndrias/patologia , Doença de Parkinson/patologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Respiração , alfa-Sinucleína/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
6.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199513

RESUMO

Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable ß-sheet enriched intermediates, which are stabilized by intermolecular interactions with other ß-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas/genética , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Conformação Proteica em Folha beta , Amiloide/genética , Amiloide/ultraestrutura , Humanos , Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestrutura , Proteínas tau/genética , Proteínas tau/ultraestrutura
7.
J Neurochem ; 152(4): 468-481, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31602645

RESUMO

Prion protein (PrPC ) localizes stably in lipid rafts microdomains and is able to recruit downstream signal transduction pathways by the interaction with promiscuous partners. Other proteins have the ability to occasionally be recruited to these specialized membrane areas, within multimolecular complexes. Among these, we highlight the presence of the low-density lipoprotein receptor-related protein 1 (LRP1), which was found localized transiently in lipid rafts, suggesting a different function of this receptor that through lipid raft becomes able to activate a signal transduction pathway triggered by specific ligands, including Tissue plasminogen activator (tPA). Since it has been reported that PrPC participates in the tPA-mediated plasminogen activation, in this study, we describe the role of lipid rafts in the recruitment and activation of downstream signal transduction pathways mediated by the interaction among tPA, PrPC and LRP1 in human neuroblastoma SK-N-BE2 cell line. Co-immunoprecipitation analysis reveals a consistent association between PrPC and GM1, as well as between LRP1 and GM1, indicating the existence of a glycosphingolipid-enriched multimolecular complex. In our cell model, knocking-down PrPC by siRNA impairs ERK phosphorylation induced by tPA. Moreover the alteration of the lipidic milieu of lipid rafts, perturbing the physical/functional interaction between PrPC and LRP1, inhibits this response. We show that LRP1 and PrPC , following tPA stimulation, may function as a system associated with lipid rafts, involved in receptor-mediated neuritogenic pathway. We suggest this as a multimolecular signaling complex, whose activity depends strictly on the integrity of lipid raft and is involved in the neuritogenic signaling.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Microdomínios da Membrana/metabolismo , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Transdução de Sinais/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Linhagem Celular Tumoral , Humanos
8.
Mol Cell Neurosci ; 88: 167-176, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378245

RESUMO

Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-ß-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes.


Assuntos
Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Neuroglobina/metabolismo , Neuroproteção/fisiologia , Apoptose/fisiologia , Subpopulações de Linfócitos B/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia
9.
J Neurochem ; 146(5): 585-597, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29779213

RESUMO

TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full-length protein and as two shorter forms of 25 and 35 kDa. Full-length mutant TDP-43s found in amyotrophic lateral sclerosis patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space, while the full-length forms also localize in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full-length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full-length and short isoforms to generate toxic aggregates, we propose that the presence of full-length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Neurônios , Oligonucleotídeos/toxicidade , Isoformas de Proteínas/metabolismo , Linhagem Celular Transformada , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Chaperonina 60/genética , Chaperonina 60/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Citosol/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Imunoprecipitação , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mutação/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Consumo de Oxigênio/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transfecção
10.
Mediators Inflamm ; 2017: 7821672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081604

RESUMO

The progressive and fatal loss of upper (brain) and lower (spinal cord) motor neurons and muscle denervation concisely condenses the clinical picture of amyotrophic lateral sclerosis (ALS). Despite the multiple mechanisms believed to underlie the selective loss of motor neurons, ALS aetiology remains elusive and obscure. Likewise, there is also a cluster of alterations in ALS patients in which muscle wasting, body weight loss, eating dysfunction, and abnormal energy dissipation coexist. Defective energy metabolism characterizes the ALS progression, and such paradox of energy balance stands as a challenge for the understanding of ALS pathogenesis. The hypermetabolism in ALS will be examined from tissue-specific energy imbalance (e.g., skeletal muscle) to major energetic pathways (e.g., AMP-activated protein kinase) and whole-body energy alterations including glucose and lipid metabolism, nutrition, and potential involvement of interorgan communication. From the point of view here expressed, the hypermetabolism in ALS should be evaluated as a magnifying glass through which looking at the ALS pathogenesis is from a different perspective in which defective metabolism can disclose novel mechanistic interpretations and lines of intervention.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA