RESUMO
Current cancer therapies focus on reducing immunosuppression and remodeling the tumor microenvironment to inhibit metastasis, cancer progression, and therapeutic resistance. Programmed death receptor 1 (PD-1) is expressed on immune T cells and is one of the so-called checkpoint proteins that can suppress or stop the immune response. To evade the immune system, cancer cells overexpress a PD-1 inhibitor protein (PD-L1), which binds to the surface of T cells to activate signaling pathways that induce immune suppression. This research aimed to synthesize PD-L1 inhibitory peptides (PD-L1-i) labeled with lutetium-177 (177Lu-DOTA-PD-L1-i) and actinium-225 (225Ac-HEHA-PD-L1-i) and to preclinically evaluate their potential as radiopharmaceuticals for targeted radiotherapy at the tumor microenvironment level. Using PD-L1-i peptide as starting material, conjugation with HEHA-benzene-SCN and DOTA-benzene-SCN was performed to yield DOTA-PD-L1-i and HEHA-PD-L1-I, which were characterized by FT-IR, UV-vis spectroscopy, and HPLC. After labeling the conjugates with 225Ac and 177Lu, cellular uptake in HCC827 cancer cells (PD-L1 positive), conjugate specificity evaluation by immunofluorescence, radiotracer effect on cell viability, biodistribution, biokinetics, and assessment of radiation absorbed dose in mice with in duced lung micrometastases were performed. 225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i, obtained with radiochemical purities of 95 ± 3% and 98.5 ± 0.5%, respectively, showed in vitro and in vivo specific recognition for the PD-L1 protein in lung cancer cells and high uptake in HCC287 lung micrometastases (>30% ID). The biokinetic profiles of 177Lu-DOTA-PD-L1-i and 225Ac-DOTA-PD-L1-i showed rapid blood clearance with renal and hepatobiliary elimination and no accumulation in normal tissues. 225Ac-DOTA-PD-L1-i produced a radiation dose of 5.15 mGy/MBq to lung micrometastases. In the case of 177Lu-DOTA-PD-L1-i, the radiation dose delivered to the lung micrometastases was ten times (43 mGy/MBq) that delivered to the kidneys (4.20 mGy/MBq) and fifty times that delivered to the liver (0.85 mGy/MBq). Therefore, the radiotherapeutic PD-L1-i ligands of 225Ac and 177Lu developed in this research could be combined with immunotherapy to enhance the therapeutic effect in various types of cancer.
Assuntos
Antígeno B7-H1 , Compostos Radiofarmacêuticos , Camundongos , Animais , Compostos Radiofarmacêuticos/uso terapêutico , Distribuição Tecidual , Benzeno , Micrometástase de Neoplasia , Espectroscopia de Infravermelho com Transformada de Fourier , Microambiente Tumoral , Lutécio/uso terapêutico , Linhagem Celular TumoralRESUMO
Prostate-specific membrane antigens (PSMAs) are frequently overexpressed in both tumor stromal endothelial cells and malignant cells (stromal/tumor cells) of various cancers. The RGD (Arg-Gly-Asp) peptide sequence can specifically detect integrins involved in tumor angiogenesis. This study aimed to preclinically evaluate the cytotoxicity, biokinetics, dosimetry, and therapeutic efficacy of 225Ac-iPSMA-RGD to determine its potential as an improved radiopharmaceutical for alpha therapy compared with the 225Ac-iPSMA and 225Ac-RGD monomers. HEHA-HYNIC-iPSMA-RGD (iPSMA-RGD) was synthesized and characterized by FT-IR, UV-vis, and UPLC mass spectroscopy. The cytotoxicity of 225Ac-iPSMA-RGD was assessed in HCT116 colorectal cancer cells. Biodistribution, biokinetics, and therapeutic efficacy were evaluated in nude mice with induced HCT116 tumors. In vitro results showed increased DNA double-strand breaks through ROS generation, cell apoptosis, and death in HCT116 cells treated with 225Ac-iPSMA-RGD. The results also demonstrated in vivo cytotoxicity in cancer cells after treatment with 225Ac-iPSMA-RGD and biokinetic and dosimetric properties suitable for alpha therapy, delivering ablative radiation doses up to 237 Gy/3.7 kBq to HCT116 tumors in mice. Given the phenotype of HCT116 cancer cells, the results of this study warrant further dosimetric and clinical studies to determine the potential of 225Ac-iPSMA-RGD in the treatment of colorectal cancer.
Assuntos
Neoplasias Colorretais , Neoplasias da Próstata , Neoplasias de Tecidos Moles , Humanos , Masculino , Animais , Camundongos , Integrinas/metabolismo , Distribuição Tecidual , Camundongos Nus , Espectroscopia de Infravermelho com Transformada de Fourier , Células Endoteliais/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular TumoralRESUMO
Previously, we demonstrated that the 177Lu-labeled single-chain variable fragment of an anti-prostate-specific membrane antigen (PSMA) IgG D2B antibody (scFvD2B) showed higher prostate cancer (PCa) cell uptake and tumor radiation doses compared to 177Lu-labeled Glu-ureide-based PSMA inhibitory peptides. To obtain a 99mTc-/177Lu-scFvD2B theranostic pair, this research aimed to synthesize and biochemically characterize a novel 99mTc-scFvD2B radiotracer. The scFvD2B-Tag and scFvD2B antibody fragments were produced and purified. Then, two HYNIC derivatives, HYNIC-Gly-Gly-Cys-NH2 (HYNIC-GGC) and succinimidyl-HYNIC (S-HYNIC), were used to conjugate the scFvD2B-Tag and scFvD2B isoforms, respectively. Subsequently, chemical characterization, immunoreactivity tests (affinity and specificity), radiochemical purity tests, stability tests in human serum, cellular uptake and internalization in LNCaP(+), PC3-PIP(++) or PC3(-) PCa cells of the resulting unlabeled HYNIC-scFvD2B conjugates (HscFv) and 99mTc-HscFv agents were performed. The results showed that incorporating HYNIC as a chelator did not affect the affinity, specificity or stability of scFvD2B. After purification, the radiochemical purity of 99mTc-HscFv radiotracers was greater than 95%. A two-sample t-test of 99mTc-HscFv1 and 99mTc-HscFv1 uptake in PC3-PIP vs. PC3 showed a p-value < 0.001, indicating that the PSMA receptor interaction of 99mTc-HscFv agents was statistically significantly higher in PSMA-positive cells than in the negative controls. In conclusion, the results of this research warrant further preclinical studies to determine whether the in vivo pharmacokinetics and tumor uptake of 99mTc-HscFv still offer sufficient advantages over HYNIC-conjugated peptides to be considered for SPECT/PSMA imaging.
Assuntos
Neoplasias da Próstata , Compostos Radiofarmacêuticos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Anticorpos , Fragmentos de ImunoglobulinasRESUMO
Actinium-225 and other alpha-particle-emitting radionuclides have shown high potential for cancer treatment. Reconstituted high-density lipoproteins (rHDL) specifically recognize the scavenger receptor B type I (SR-BI) overexpressed in several types of cancer cells. Furthermore, after rHDL-SR-BI recognition, the rHDL content is injected into the cell cytoplasm. This research aimed to prepare a targeted 225Ac-delivering nanosystem by encapsulating the radionuclide into rHDL nanoparticles. The synthesis of rHDL was performed in two steps using the microfluidic synthesis method for the subsequent encapsulation of 225Ac, previously complexed to a lipophilic molecule (225Ac-DOTA-benzene-p-SCN, CLog P = 3.42). The nanosystem (13 nm particle size) showed a radiochemical purity higher than 99% and stability in human serum. In vitro studies in HEP-G2 and PC-3 cancer cells (SR-BI positive) demonstrated that 225Ac was successfully internalized into the cytoplasm of cells, delivering high radiation doses to cell nuclei (107 Gy to PC-3 and 161 Gy to HEP-G2 nuclei at 24 h), resulting in a significant decrease in cell viability down to 3.22 ± 0.72% for the PC-3 and to 1.79 ± 0.23% for HEP-G2 at 192 h after 225Ac-rHDL treatment. After intratumoral 225Ac-rHDL administration in mice bearing HEP-G2 tumors, the biokinetic profile showed significant retention of radioactivity in the tumor masses (90.16 ± 2.52% of the injected activity), which generated ablative radiation doses (649 Gy/MBq). The results demonstrated adequate properties of rHDL as a stable carrier for selective deposition of 225Ac within cancer cells overexpressing SR-BI. The results obtained in this research justify further preclinical studies, designed to evaluate the therapeutic efficacy of the 225Ac-rHDL system for targeted alpha-particle therapy of tumors that overexpress the SR-BI receptor.
Assuntos
Nanopartículas , Neoplasias , Partículas alfa/uso terapêutico , Animais , Lipoproteínas HDL/química , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Receptores DepuradoresRESUMO
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.
Assuntos
Nanopartículas , Medicina de Precisão , Animais , Camundongos , Distribuição Tecidual , Benzeno , Lipoproteínas HDL/metabolismo , Nanopartículas/uso terapêutico , Colesterol/metabolismo , Lipoproteínas/metabolismo , Radioisótopos , Fosfolipídeos , Receptores Depuradores/metabolismoRESUMO
Fibroblast activation protein (FAP) is expressed in the microenvironment of most human epithelial tumors. 68Ga-labeled FAP inhibitors based on the cyanopyrrolidine structure (FAPI) are currently used for the detection of the tumor microenvironment by PET imaging. This research aimed to design, synthesize and preclinically evaluate a new FAP inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-iFAP) structure for SPECT imaging. Molecular docking for affinity calculations was performed using the AutoDock software. The chemical synthesis was based on a series of coupling reactions of 6-hidrazinylnicotinic acid (HYNIC) and D-alanine to a boronic acid derivative. The iFAP was prepared as a lyophilized formulation based on EDDA/SnCl2 for labeling with 99mTc. The radiochemical purity (R.P.) was verified via ITLC-SG and reversed-phase radio-HPLC. The stability in human serum was evaluated by size-exclusion HPLC. In vitro cell uptake was assessed using N30 stromal endometrial cells (FAP positive) and human fibroblasts (FAP negative). Biodistribution and tumor uptake were determined in Hep-G2 tumor-bearing nude mice, from which images were acquired using a micro-SPECT/CT. The iFAP ligand (Ki = 0.536 nm, AutoDock affinity), characterized by UV-Vis, FT-IR, 1H-NMR and UPLC-mass spectroscopies, was synthesized with a chemical purity of 92%. The 99mTc-iFAP was obtained with a R.P. >98%. In vitro and in vivo studies indicated high radiotracer stability in human serum (>95% at 24 h), specific recognition for FAP, high tumor uptake (7.05 ± 1.13% ID/g at 30 min) and fast kidney elimination. The results found in this research justify additional dosimetric and clinical studies to establish the sensitivity and specificity of the 99mTc-iFAP.
Assuntos
Endopeptidases/metabolismo , Neoplasias Hepáticas Experimentais , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Compostos de Organotecnécio , Compostos Radiofarmacêuticos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tecnécio , Animais , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Compostos de Organotecnécio/farmacologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia , Tecnécio/química , Tecnécio/farmacocinética , Tecnécio/farmacologiaRESUMO
In 40-50% of colorectal cancer (CRC) cases, K-Ras gene mutations occur, which induce the expression of the K-Ras4B oncogenic isoform. K-Ras4B is transported by phosphodiesterase-6δ (PDE6δ) to the plasma membrane, where the K-Ras4B-PDE6δ complex dissociates and K-Ras4B, coupled to the plasma membrane, activates signaling pathways that favor cancer aggressiveness. Thus, the inhibition of the K-Ras4B-PDE6δ dissociation using specific small molecules could be a new strategy for the treatment of patients with CRC. This research aimed to perform a preclinical proof-of-concept and a therapeutic potential evaluation of the synthetic I-C19 and 131I-C19 compounds as inhibitors of the K-Ras4B-PDE6δ dissociation. Molecular docking and molecular dynamics simulations were performed to estimate the binding affinity and the anchorage sites of I-C19 in K-Ras4B-PDE6δ. K-Ras4B signaling pathways were assessed in HCT116, LoVo and SW620 colorectal cancer cells after I-C19 treatment. Two murine colorectal cancer models were used to evaluate the I-C19 therapeutic effect. The in vivo biokinetic profiles of I-C19 and 131I-C19 and the tumor radiation dose were also estimated. The K-Ras4B-PDE6δ stabilizer, 131I-C19, was highly selective and demonstrated a cytotoxic effect ten times greater than unlabeled I-C19. I-C19 prevented K-Ras4B activation and decreased its dependent signaling pathways. The in vivo administration of I-C19 (30 mg/kg) greatly reduced tumor growth in colorectal cancer. The biokinetic profile showed renal and hepatobiliary elimination, and the highest radiation absorbed dose was delivered to the tumor (52 Gy/74 MBq). The data support the idea that 131I-C19 is a novel K-Ras4B/PDE6δ stabilizer with two functionalities: as a K-Ras4B signaling inhibitor and as a compound with radiotherapeutic activity against colorectal tumors.
Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Humanos , Iodetos , Radioisótopos do Iodo , Camundongos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
BACKGROUND: Diagnosis of implant-associated infection is challenging. Several radiopharmaceuticals have been described but direct comparisons are limited. Here we compared in vitro and in an animal model 99mTc-UBI, 99mTc-ciprofloxacin, 99mTcN-CiproCS2 and 111In-DTPA-biotin for targeting E. coli (ATCC 25922) and S. aureus (ATCC 43335). METHODS: Stability controls were performed with the labelled radiopharmaceuticals during 6 hours in saline and serum. The in vitro binding to viable or killed bacteria was evaluated at 37 °C and 4 °C. For in vivo studies, Teflon cages were subcutaneously implanted in mice, followed by percutaneous infection. Biodistribution of i.v. injected radiolabelled radiopharmaceuticals were evaluated during 24 h in cages and dissected tissues. RESULTS: Labelling efficiency of all radiopharmaceuticals ranged between 94% and 98%, with high stability both in saline and in human serum. In vitro binding assays displayed a rapid but poor bacterial binding for all tested agents. Similar binding kinetic occurred also with heat-killed and ethanol-killed bacteria. In the tissue cage model, infection was detected at different time points: 99mTc-UBI and 99mTcN-CiproCS2 showed higher infected cage/sterile cage ratio at 24 hours for both E. coli and S. aureus; 99mTc-Ciprofloxacin at 24 hours for both E. coli and at 4 hours for S. aureus; 111In-DTPA-biotin accumulates faster in both E. coli and S. aureus infected cages. CONCLUSIONS: 99mTc-UBI, 99mTcN-CiproCS2 showed poor in vitro binding but good in vivo binding to E. coli only. 111In-DTPA-biotin showed poor in vitro binding but good in vivo binding to S. aureus and poor to E. coli. 99mTc-Ciprofloxacin showed poor in vitro binding but good in vivo binding to all tested bacteria. The mechanism of accumulation in infected sites remains to be elucidated.
Assuntos
Escherichia coli/fisiologia , Radioisótopos de Índio , Infecções Relacionadas à Prótese/diagnóstico por imagem , Compostos Radiofarmacêuticos/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Staphylococcus aureus/fisiologia , Animais , Biotina/metabolismo , Biotina/farmacocinética , Ciprofloxacina/análogos & derivados , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacocinética , Escherichia coli/metabolismo , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL , Compostos de Organotecnécio/metabolismo , Compostos de Organotecnécio/farmacocinética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacocinética , Infecções Relacionadas à Prótese/microbiologia , Controle de Qualidade , Compostos Radiofarmacêuticos/farmacocinética , Staphylococcus aureus/metabolismo , Tiocarbamatos/metabolismo , Tiocarbamatos/farmacocinética , Distribuição TecidualRESUMO
The integration of fluorescence and plasmonic properties into one molecule is of importance in developing multifunctional imaging and therapy nanoprobes. The aim of this research was to evaluate the fluorescent properties and the plasmonic-photothermal, therapeutic, and radiotherapeutic potential of 177Lu-dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity (177Lu-DenAuNP-folate-bombesin) when it is internalized in T47D breast cancer cells. The intense near-Infrared (NIR) fluorescence emitted at 825 nm from the conjugate inside cells corroborated the usefulness of DenAuNP-folate-bombesin for optical imaging. After laser irradiation, the presence of the nanosystem in cells caused a significant increase in the temperature of the medium (46.8°C, compared to 39.1°C without DenAuNP-folate-bombesin, P < 0.05), resulting in a significant decrease in cell viability (down to 16.51% ± 1.52%) due to the 177Lu-DenAuNP-folate-bombesin plasmonic properties. After treatment with 177Lu-DenAuNP-folate-bombesin, the T47D cell viability decreased 90% because of the radiation-absorbed dose (63.16 ± 4.20 Gy) delivered inside the cells. The 177Lu-DenAuNP-folate-bombesin nanoprobe internalized in cancer cells exhibited properties suitable for optical imaging, plasmonic-photothermal therapy, and targeted radiotherapy.
Assuntos
Dendrímeros/química , Ácido Fólico/química , Ouro/química , Lutécio/química , Nanopartículas Metálicas/química , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão , Espectrometria de FluorescênciaRESUMO
The somatostatin receptors (SR), which are overexpressed in a majority of neuroendocrine tumors, are targets for radiopeptide-based imaging using for example the 99mTc-Tyr3-Octreotide peptide. Dendrimers are hyperbranched polymeric structures. The nanoscopic size and near-monodisperse nature properties give polyamidoamine (PAMAM) dendrimers an edge over linear polymers in the context of drug delivery. Gold nanoparticles (AuNPs) conjugated to peptides produces stable multimeric systems with target-specific molecular recognition. The aim of this research was to prepare two nanosized multimeric systems for neuroendocrine tumor imaging, 99mTc-PAMAM-Tyr3-Octreotide and 99mTc-AuNP-Tyr-Octreotide, and to compare their in vitro uptake in SR-positive AR42J cancer cells as well as their biodistribution profile in athymic mice bearing AR42J tumors. [Tyr3, Lys(Boc)5]-Octreotide was conjugated to the carboxylate groups of the PAMAM dendrimer (G3.5) with further Boc deprotection using TFA. 99mTc labeling was carried out by a direct method. 99mTc-Tyr3-Octreotide was conjugated to AuNPs (20 nm) by spontaneous reaction with the thiol group of cysteine. Radiochemical purity (RP) was determined by size-exclusion HPLC and ITLC-SG analyses. In vitro binding studies were carried out in AR42J cancer cells. Biodistribution studies were accomplished in athymic mice with AR42J-induced tumors with blocked and unblocked receptors. Elemental analysis demonstrated that 26 Tyr3-Octreotide molecules were successfully conjugated to one molecule of PAMAM. RP for both nanosized conjugates was > 94% and showed recognition for SR in AR42J cells. The tissue distribution of radioactivity 2 h after 99mTc-PAMAM-Tyr3-Octreotide administration in mice showed specific tumor uptake (4.12 ± 0.57% of injected dose/g) and high accumulation in the pancreas (15.08 ± 3.11% of injected dose/g) which expresses SR. No significant difference in the tumor uptake was found between 99mTc-PAMAM-Tyr3-Octreotide and 99mTc-AuNP-Tyr3-Octreotide. However, the dendrimer-peptide conjugate showed a significant renal excretion. Both radiopharmaceuticals demonstrated properties suitable for use as target-specific agents for molecular imaging of tumors that overexpressed SR.
Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tumores Neuroendócrinos/diagnóstico por imagem , Octreotida/química , Compostos Radiofarmacêuticos/química , Somatostatina/análogos & derivados , Animais , Linhagem Celular Tumoral , Dendrímeros/química , Masculino , Camundongos , Camundongos Nus , Cintilografia , Ratos , Tecnécio/química , Distribuição TecidualRESUMO
Gold nanoparticles conjugated to cyclo-[Arg-Gly-Asp-D-Phe-Lys(Cys)] peptides (AuNP-c[RGDfK(C)]) have been reported as systems with specific cell internalization in breast cancer cells. AuNPs have also been proposed as localized heat sources for cancer treatment using laser irradiation or radiofrequency (RF). The aim of this research was to analyze, based on the Mie theory, the AuNP-c[RGDfK(C)] absorption cross-sections (C(abs)) of low-frequency electromagnetic waves (13.56 MHz, λ = 22 m) and optical frequency waves (laser at λ = 532 nm) and to compare their effect on MCF7 cell viability as thermal conversion sources in AuNPs (20 nm) located inside cells. Cell viability was assessed in MCF7 cells treated with AuNP-c[RGDfK(C)] or water after exposure to the RF field (200 W, 100 V/cm) or laser irradiation (Irradiance 0.65 W/cm2). In both cases (RF and laser) the presence of nanoparticles in cells caused a significant increase in the temperature of the medium (RF: AT = 29.9 ± 1.7 degrees C for AuNP compared to ΔT = 13.0 ± 1.4 degrees C for water; laser: ΔT = 13.5 ± 0.7 degrees C for AuNP compared to 3.3 ± 0.5 degrees C for water). Although RF induced a higher increase in the temperature of the medium with nanoparticles, the largest effect on the cell viability was produced by laser when nanoparticles were located inside the cells (8.7?0.7% for laser compared to 19.4 ± 0.9% for RF). The differences obtained in C(abs) values (laser: 3.7 x 10- (16) m2; RF: 7.9 x 10-(23) m2) and the observed effect on MFC7 cell viability support two mechanisms previously proposed "wave energy absorption by AuNPs" when laser is used as a thermal conversion source, and "attenuation of the wave passing through the AuNP suspension" when RF is applied. The AuNP-c[RGDfK(C)] nanosystem shows suitable properties to improve hyperthermia treatments under laser irradiation due to a larger heat release inside cells.
Assuntos
Ouro/química , Hipertermia Induzida/métodos , Lasers , Nanopartículas Metálicas/química , Ondas de Rádio , Sobrevivência Celular , Humanos , Células MCF-7 , NanosferasRESUMO
Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment.
RESUMO
Recently, we reported a new fibroblast activation protein (FAP) inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-HYNIC-D-Alanine-BoroPro)(99mTc-HYNIC-iFAP) structure for tumor microenvironment SPECT imaging. This research aimed to synthesize 68Ga-[2,2',2â³,2â´-(2-(4-(2-(5-(((S)-1-((S)-2-boronopyrrolidin-1-yl)-1-oxopropan-2-yl)carbamoyl)pyridin-2-yl)hydrazine-1-carbothioamido)benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid] (68Ga-DOTA-D-Alanine-BoroPro)(68Ga-iFAP) as a novel radiotracer for PET imaging and evaluate its usefulness for FAP expression in malignant and non-malignant tissues. The coupling of p-SCN-benzene DOTA with HYNIC-iFAP was used for the chemical synthesis and further labeling with 68Ga. Radiochemical purity was verified by radio-HPLC. The specificity of 68Ga-iFAP was evaluated in HCT116 cells, in which FAP expression was verified by immunofluorescence and Western blot. Biodistribution and biokinetic studies were performed in murine models. 68Ga-iFAP uptake at the myocardial level was assessed in mice with induced infarction. First-in-human images of 68Ga-iFAP in healthy subjects and patients with myocardial infarction, glioblastoma, prostate cancer, and breast cancer were also obtained. DOTA-D-Alanine BoroPro was prepared with a chemical purity of 98% and was characterized by UPLC mass spectroscopy, FT-IR, and UV-vis. The 68Ga-iFAP was obtained with a radiochemical purity of >95%. In vitro and in vivo studies demonstrated 68Ga-iFAP-specific recognition for FAP, rapid renal elimination, and adequate visualization of the glioblastoma, breast tumor, prostate cancer, and myocardial infarction sites. The results of this research justify further dosimetry and clinical trials to establish the specificity and sensitivity of 68Ga-iFAP PET for FAP expression imaging.
RESUMO
Radiolabeled gold nanoparticles may function simultaneously as radiotherapy and thermal ablation systems. The gastrin-releasing peptide receptor (GRP-r) is overexpressed in prostate cancer, and Lys(3) -bombesin is a peptide that binds with high affinity to the GRP-r. HIV Tat(49-57) is a cell-penetrating peptide that reaches the DNA. In cancer cells, (177) Lu shows efficient crossfire effect, whereas (99m) Tc that is internalized in the cancer cell nuclei acts as an effective system of targeted radiotherapy because of the biological Auger effect. The aim of this research was to evaluate the in vitro potential of (99m) Tc-labeled and (177) Lu-labeled gold nanoparticles conjugated to Tat(49-57)-Lys(3) -bombesin peptides ((99m) Tc/(177) Lu-AuNP-Tat-BN) as a plasmonic photothermal therapy and targeted radiotherapy system in PC3 prostate cancer cells. Peptides were conjugated to AuNPs (5 nm) by spontaneous reaction with the thiol group of cysteine (Cys). The effect on PC3 cell viability after laser heating of the AuNP-Tat-BN incubated with the cancer cells was conducted using an Nd:YAG laser pulsed for 5 ns at 532 nm (0.65 W/cm(2) ). For the (99m) Tc/(177) Lu-AuNP-Tat-BN to be obtained, the (177) Lu-DOTA-Gly-Gly-Cys and (99m) Tc-HYNIC-octreotide radiopeptides were first prepared and added simultaneously to a solution of AuNP-Tat-BN. (99m) Tc/(177) Lu-AuNP-Tat-BN (20 Bq/cell) was incubated with PC3 cells, and the effect on the cell proliferation was evaluated after 3 days. Fluorescence images of (99m) Tc/(177) Lu-AuNP-Tat-BN internalized in nuclei of PC3 were also obtained. After laser irradiation, the presence of AuNP-Tat-BN caused a significant increase in the temperature of the medium (46.4 vs 39.5 °C of that without AuNP) resulting in a significant decrease in PC3 cell viability down to 1.3%. After treatment with (99m) Tc/(177) Lu-AuNP-Tat-BN, the PC3 cell proliferation was inhibited. The nanosystem exhibited properties suitable for plasmonic photothermal therapy and targeted radiotherapy in the treatment of prostate cancer.
Assuntos
Bombesina/análogos & derivados , Núcleo Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/química , Bombesina/química , Bombesina/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos da radiação , Sobrevivência Celular , Humanos , Lasers , Masculino , Compostos de Organotecnécio/farmacologia , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/farmacologiaRESUMO
Recent cancer therapies have focused on reducing immune suppression in the tumor microenvironment to prevent cancer progression and metastasis. PD-1 is a checkpoint protein that stops the immune response and is expressed on immune T cells. Cancer cells express a PD-1 ligand (PD-L1) to bind to the T-cell surface and activate immunosuppressive pathways. This study aimed to design, synthesize, and evaluate a 99mTc-labeled PD-L1-targeting cyclic peptide inhibitor (99mTc-iPD-L1) as a novel SPECT radiopharmaceutical for PD-L1 expression imaging. AutoDock software (version 1.5) was used to perform molecular docking for affinity calculations. The chemical synthesis was based on the coupling reaction of 6-hydrazinylpyridine-3-carboxylic acid with a 14-amino-acid cyclic peptide. iPD-L1 was prepared for 99mTc labeling. Radio-HPLC was used to verify radiochemical purity. The stability of the radiopeptide in human serum was evaluated by HPLC. iPD-L1 specificity was assessed by SDS-PAGE. [99mTc]Tc-iPD-L1 cellular uptake in PD-L1-positive cancer cells (HCC827 and HCT116) and biodistribution in mice with induced tumors were also performed. One patient with advanced plantar malignant melanoma received [99mTc]Tc-iPD-L1. The iPD-L1 ligand (AutoDock affinity: -6.7 kcal/mol), characterized by UPLC mass, FT-IR, and UV-Vis spectroscopy, was obtained with a chemical purity of 97%. The [99mTc]Tc-iPD-L1 was prepared with a radiochemical purity of >90%. In vitro and in vivo analyses demonstrated [99mTc]Tc-iPD-L1 stability (>90% at 24 h) in human serum, specific recognition for PD-L1, high uptake by the tumor (6.98 ± 0.89% ID/g at 1 h), and rapid hepatobiliary and kidney elimination. [99mTc]Tc-iPD-L1 successfully detected PD-L1-positive lesions in a patient with plantar malignant melanoma. The results obtained in this study warrant further dosimetric and clinical studies to determine the sensitivity and specificity of [99mTc]Tc-iPD-L1/SPECT for PD-L1 expression imaging.
RESUMO
177Lu-iPSMA is a novel radioligand developed at ININ-Mexico with a high affinity for the PSMA protein heavily expressed in cancer cells of approximately 95% of patients with metastatic castration-resistant prostate cancer (mCRPC). 177Lu-DOTATOC is a patent-free radioligand, molecularly recognized by somatostatin receptors (SSTR-2) overexpressed in cancer cells of about 80% of patients with metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NET). This translational research aimed to determine the efficacy and safety of 177Lu-iPSMA and 177Lu-DOTATOC developed as GMP pharmaceutical formulations for treating progressive and advanced mCRPC and NET. One hundred and forty-five patients with mCRPC and one hundred and eighty-seven subjects with progressive NET (83% GEP-NET and 17% other NET), treated with 177Lu-iPSMA and 177Lu-DOTATOC, respectively, were evaluated. Patients received a mean dose of 7.4 GBq per administration of 177Lu-iPSMA (range 1-5 administrations; 394 treatment doses) or 177Lu-DOTATOC (range 2-8 administrations; 511 treatment doses) at intervals of 1.5-2.5 months. Efficacy was assessed by SPECT/CT or PET/CT. Results were stratified by primary tumor origin and number of doses administered. Patients with mCRPC showed overall survival (OS) of 21.7 months with decreased radiotracer tumor uptake (SUV) and PSA level in 80% and 73% of patients, respectively. In addition, a significant reduction in pain (numerical scale from 10-7 to 3-1) was observed in 88% of patients with bone metastases between one and two weeks after the second injection. In the GEP-NET population, the median progression-free survival was 34.7 months, with an OS of >44.2 months. The treatments were well tolerated. Only ten patients experienced grade ≥ 3 myelosuppression (3% of all patients). The observed safety profiles and favorable therapeutic responses demonstrated the potential of 177Lu-iPSMA and 177Lu-DOTATOC to improve overall survival and quality of life in patients with progressive and advanced mCRPC and NET.
RESUMO
Nanoparticles are excellent platforms for several biomedical applications, including cancer treatment. They can incorporate different molecules to produce combinations of chemotherapeutic agents, radionuclides, and targeting molecules to improve the therapeutic strategies against cancer. These specific nanosystems are designed to have minimal side effects on healthy cells and better treatment efficacy against cancer cells when compared to chemotherapeutics, external irradiation, or targeted radiotherapy alone. In colorectal cancer, some metal and polymeric nanoparticle platforms have been used to potentialize external radiation therapy and targeted drug delivery. Polymeric nanoparticles, liposomes, albumin-based nanoparticles, etc., conjugated with PEG and/or HLA, can be excellent platforms to increase blood circulation time and decrease side effects, in addition to the combination of chemo/radiotherapy, which increases therapeutic efficacy. Additionally, radiolabeled nanoparticles have been conjugated to target specific tissues and are mainly used as agents for diagnosis, drug/gene delivery systems, or plasmonic photothermal therapy enhancers. This review aims to analyze how nanosystems are shaping combinatorial therapy and evaluate their status in the treatment of colorectal cancer.
RESUMO
The fibroblast activation protein (FAP) is heavily expressed in fibroblasts associated with the tumor microenvironment, while the prostate-specific membrane antigen (PSMA) is expressed in the neovasculature of malignant angiogenic processes. Previously, we reported that [177Lu]lutetium sesquioxide-iFAP/iPSMA nanoparticles ([177Lu]Lu-iFAP/iPSMA) inhibit HCT116 tumor progression in mice. Understanding the toxicity of [177Lu]Lu-iFAP/iPSMA in healthy tissues, as well as at the tissue and cellular level in pathological settings, is essential to demonstrate the nanosystem safety for treating patients. It is equally important to demonstrate that [177Lu]Lu-iFAP/iPSMA can be prepared under good manufacturing practices (GMP) with reproducible pharmaceutical-grade quality characteristics. This research aimed to prepare [177Lu]Lu-iFAP/iPSMA under GMP-compliant radiopharmaceutical processes and evaluate its toxicity in cell cultures and murine biological systems under pathological environments. [177Lu]Lu2O3 nanoparticles were formulated as radiocolloidal solutions with FAP and PSMA inhibitor ligands (iFAP and iPSMA), sodium citrate, and gelatin, followed by heating at 121 °C (103-kPa pressure) for 15 min. Three consecutive batches were manufactured. The final product was analyzed according to conventional pharmacopeial methods. The Lu content in the formulations was determined by X-ray fluorescence. [177Lu]Lu-iFAP/iPSMA performance in cancer cells was evaluated in vitro by immunofluorescence. Histopathological toxicity in healthy and tumor tissues was assessed in HCT116 tumor-bearing mice. Immunohistochemical assays were performed to corroborate FAP and PSMA tumor expression. Acute genotoxicity was evaluated using the micronuclei assay. The results showed that the batches manufactured under GMP conditions were reproducible. Radiocolloidal solutions were sterile and free of bacterial endotoxins, with radionuclidic and radiochemical purity greater than 99%. The lutetium content was 0.10 ± 0.02 mg/mL (0.9 GBq/mg). Significant inhibition of cell proliferation in vitro and in tumors was observed due to the accumulation of nanoparticles in the fibroblasts (FAP+) and neovasculature (PSMA+) of the tumor microenvironment. No histopathological damage was detected in healthy tissues. The data obtained in this research provide new evidence on the selective toxicity to malignant tumors and the absence of histological changes in healthy tissues after intravenous injection of [177Lu]Lu-iFAP/iPSMA in mammalian hosts. The easy preparation under GMP conditions and the toxicity features provide the added value needed for [177Lu]Lu-iFAP/iPSMA clinical translation.
RESUMO
Prostate-specific membrane antigen (PSMA) is expressed in a variety of cancer cells, while the fibroblast activation protein (FAP) is expressed in the microenvironment of tumors. Previously, we reported the ability of iPSMA and iFAP ligands to specifically target PSMA and FAP proteins, as well as the preparation of stable 177Lu2O3 nanoparticles (<100 nm) functionalized with target-specific peptides. This research aimed to evaluate the dosimetry and therapeutic response of Lu2O3-iPSMA and Lu2O3-iFAP nanoparticles activated by neutron irradiation to demonstrate their potential for theranostic applications in nuclear medicine. The biokinetic behavior, radiation absorbed dose, and metabolic activity ([18F]FDG/micro-PET, SUV) in preclinical tumor tissues (athymic mice), following treatment with 177Lu2O3-iPSMA, 177Lu2O3-iFAP or 177Lu2O3 nanoparticles, were assessed. One patient with multiple colorectal liver metastases (PSMA-positive) received 177Lu2O3-iPSMA under a "compassionate use" protocol. Results indicated no significant difference (p < 0.05) between 177Lu2O3-iPSMA and 177Lu2O3-iFAP, regarding tumor radiation absorbed doses (105 ± 14 Gy, 99 ± 12 Gy and 58 ± 7 Gy for 177Lu2O3-iPSMA, 177Lu2O3-iFAP, and 177Lu2O3, respectively) and tumor metabolic activity (SUV of 0.421 ± 0.092, 0.375 ± 0.104 and 1.821 ± 0.891 for 177Lu2O3-iPSMA, 177Lu2O3-iFAP, and 177Lu2O3, respectively) in mice after treatment, which correlated with the observed therapeutic response. 177Lu2O3-iPSMA and 177Lu2O3-iFAP significantly inhibited tumor progression, due to the prolonged tumor retention and a combination of 177Lu radiotherapy and iPSMA or iFAP molecular recognition. There were negligible uptake values in non-target tissues and no evidence of liver and renal toxicity. The doses received by the patient's liver metastases (42−210 Gy) demonstrated the potential of 177Lu2O3-iPSMA for treating colorectal liver metastases.
RESUMO
Fibroblast activation protein (FAP) is highly expressed on the cancer-associated fibroblasts (CAF) of the tumor stroma. Recently, we reported the preclinical evaluation and clinical biokinetics of a novel 99mTc-labeled FAP inhibitor radioligand ([99mTc]Tc-iFAP). This research aimed to evaluate [99mTc]Tc-iFAP for the tumor stroma imaging of six different cancerous entities and analyze them from the perspective of stromal heterogeneity. [99mTc]Tc-iFAP was prepared from freeze-dried kits with a radiochemical purity of 98 ± 1%. The study included thirty-two patients diagnosed with glioma (n = 5); adrenal cortex neuroendocrine tumor (n = 1); and breast (n = 21), lung (n = 2), colorectal (n = 1) and cervical (n = 3) cancer. Patients with glioma had been evaluated with a previous cranial MRI scan and the rest of the patients had been involved in a [18F]FDG PET/CT study. All oncological diagnoses were corroborated histopathologically. The patients underwent SPECT/CT brain imaging (glioma) or thoracoabdominal imaging 1 h after [99mTc]Tc-iFAP administration (i.v., 735 ± 63 MBq). The total lesions (n = 111) were divided into three categories: primary tumors (PT), lymph node metastases (LNm), and distant metastases (Dm). [99mTc]Tc-iFAP brain imaging was positive in four high-grade WHO III-IV gliomas and negative in one treatment-naive low-grade glioma. Both [99mTc]Tc-iFAP and [18F]FDG detected 26 (100%) PT, although the number of positive LNm and Dm was significantly higher with [18F]FDG [82 (96%)], in comparison to [99mTc]Tc-iFAP imaging (35 (41%)). Peritoneal carcinomatosis lesions in a patient with recurrent colorectal cancer were only visualized with [99mTc]Tc-iFAP. In patients with breast cancer, a significant positive correlation was demonstrated among [99mTc]Tc-iFAP uptake values (Bq/cm3) of PT and the molecular subtype, being higher for subtypes HER2+ and Luminal B HER2-enriched. Four different CAF subpopulations have previously been described for LNm of breast cancer (from CAF-S1 to CAF-S4). The only subpopulation that expresses FAP is CAF-S1, which is preferentially detected in aggressive subtypes (HER2 and triple-negative), confirming that FAP+ is a marker for poor disease prognosis. The results of this pilot clinical research show that [99mTc]Tc-iFAP SPECT imaging is a promising tool in the prognostic assessment of some solid tumors, particularly breast cancer.