Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(2): 026404, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089757

RESUMO

We uncover a new type of magic-angle phenomena when an AA-stacked graphene bilayer is twisted relative to another graphene system with band touching. In the simplest case this constitutes a trilayer system formed by an AA-stacked bilayer twisted relative to a single layer of graphene. We find multiple anisotropic Dirac cones coexisting in such twisted multilayer structures at certain angles, which we call "Dirac magic." We trace the origin of Dirac magic angles to the geometric structure of the twisted AA-bilayer Dirac cones relative to the other band-touching spectrum in the moiré reciprocal lattice. The anisotropy of the Dirac cones and a concomitant cascade of saddle points induce a series of topological Lifshitz transitions that can be tuned by the twist angle and perpendicular electric field. We discuss the possibility of direct observation of Dirac magic as well as its consequences for the correlated states of electrons in this moiré system.

2.
Phys Rev Lett ; 127(19): 196403, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797157

RESUMO

Plasmons are usually described in terms of macroscopic quantities such as electric fields and currents. However, as fundamental excitations of metals, they are also quantum objects with internal structure. We demonstrate that this can induce an intrinsic dipole moment which is tied to the quantum geometry of the Hilbert space of plasmon states. This quantum geometric dipole offers a unique handle for manipulation of plasmon dynamics via density modulations and electric fields. As a concrete example, we demonstrate that scattering of plasmons with a nonvanishing quantum geometric dipole from impurities is nonreciprocal, skewing in different directions in a valley-dependent fashion. This internal structure can be used to control plasmon trajectories in two dimensional materials.

3.
Phys Rev Lett ; 127(12): 126801, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597113

RESUMO

We propose a device in which a sheet of graphene is coupled to a Weyl semimetal, allowing for the physical access to the study of tunneling from two- to three-dimensional massless Dirac fermions. Because of the reconstructed band structure, we find that this device acts as a robust valley filter for electrons in the graphene sheet. We show that, by appropriate alignment, the Weyl semimetal draws away current in one of the two graphene valleys, while allowing current in the other to pass unimpeded. In contrast to other proposed valley filters, the mechanism of our proposed device occurs in the bulk of the graphene sheet, obviating the need for carefully shaped edges or dimensions.

4.
Phys Rev Lett ; 116(1): 016802, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26799038

RESUMO

Valley degrees of freedom offer a potential resource for quantum information processing if they can be effectively controlled. We discuss an optical approach to this problem in which intense light breaks electronic symmetries of a two-dimensional Dirac material. The resulting quasienergy structures may then differ for different valleys, so that the Floquet physics of the system can be exploited to produce highly polarized valley currents. This physics can be utilized to realize a valley valve whose behavior is determined optically. We propose a concrete way to achieve such valleytronics in graphene as well as in a simple model of an inversion-symmetry broken Dirac material. We study the effect numerically and demonstrate its robustness against moderate disorder and small deviations in optical parameters.

5.
Phys Rev Lett ; 113(23): 236803, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526148

RESUMO

We develop a theory of topological transitions in a Floquet topological insulator, using graphene irradiated by circularly polarized light as a concrete realization. We demonstrate that a hallmark signature of such transitions in a static system, i.e., metallic bulk transport with conductivity of order e^{2}/h, is substantially suppressed at some Floquet topological transitions in the clean system. We determine the conditions for this suppression analytically and confirm our results in numerical simulations. Remarkably, introducing disorder dramatically enhances this transport by several orders of magnitude.

6.
Nat Commun ; 13(1): 7781, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526625

RESUMO

Moiré superlattices engineer band properties and enable observation of fractal energy spectra of Hofstadter butterfly. Recently, correlated-electron physics hosted by flat bands in small-angle moiré systems has been at the foreground. However, the implications of moiré band topology within the single-particle framework are little explored experimentally. An outstanding problem is understanding the effect of band topology on Hofstadter physics, which does not require electron correlations. Our work experimentally studies Chern state switching in the Hofstadter regime using twisted double bilayer graphene (TDBG), which offers electric field tunable topological bands, unlike twisted bilayer graphene. Here we show that the nontrivial topology reflects in the Hofstadter spectra, in particular, by displaying a cascade of Hofstadter gaps that switch their Chern numbers sequentially while varying the perpendicular electric field. Our experiments together with theoretical calculations suggest a crucial role of charge polarization changing concomitantly with topological transitions in this system. Layer polarization is likely to play an important role in the topological states in few-layer twisted systems. Moreover, our work establishes TDBG as a novel Hofstadter platform with nontrivial magnetoelectric coupling.

7.
Phys Rev Lett ; 107(21): 216601, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181902

RESUMO

Graphene subject to a spatially uniform, circularly polarized electric field supports a Floquet spectrum with properties akin to those of a topological insulator. The transport properties of this system, however, are complicated by the nonequilibrium occupations of the Floquet states. We address this by considering transport in a two-terminal ribbon geometry for which the leads have well-defined chemical potentials, with an irradiated central scattering region. We demonstrate the presence of edge states, which for infinite mass boundary conditions may be associated with only one of the two valleys. At low frequencies, the bulk dc conductivity near zero energy is shown to be dominated by a series of states with very narrow anticrossings, leading to superdiffusive behavior. For very long ribbons, a ballistic regime emerges in which edge state transport dominates.

8.
Phys Rev Lett ; 105(15): 156801, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230925

RESUMO

We demonstrate that the electronic spectrum of graphene in a one-dimensional periodic potential will develop a Landau level spectrum when the potential magnitude varies slowly in space. The effect is related to extra Dirac points generated by the potential whose positions are sensitive to its magnitude. We exploit a chiral symmetry in the Dirac Hamiltonian description with a superlattice potential to show that the low energy theory contains an effective magnetic field. Numerical diagonalization of the Dirac equation confirms the presence of Landau levels. Possible consequences for transport are discussed.

9.
Phys Rev Lett ; 104(18): 186401, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482192

RESUMO

We demonstrate that, in the presence of Coulomb interactions, electrons in graphene behave like a critical system, supporting power law correlations with interaction-dependent exponents. An asymptotic analysis shows that the origin of this behavior lies in particle-hole scattering, for which the Coulomb interaction induces anomalously close approaches. With increasing interaction strength the relevant power law changes from real to complex, leading to an unusual instability characterized by a complex-valued susceptibility in the thermodynamic limit. Measurable quantities, as well as the connection to classical two-dimensional systems, are discussed.

10.
Nanoscale ; 9(10): 3576-3584, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28246665

RESUMO

Two-dimensional transition metal dichalcogenides (e.g. MoS2) have recently emerged as a promising material system for electronic and optoelectronic applications. A major challenge for these materials, however, is to realize bipolar electrical transport properties (i.e. both p-type and n-type conduction), which is critical for enhancing device performance and functionalities. Here, we demonstrate the transition metal zinc as a p-type dopant in the otherwise n-type MoS2, through systematic characterizations of large area Zn-doped MoS2 thin films grown by a one-step chemical vapor deposition (CVD) approach. Raman characterization and X-ray photoelectron spectroscopy studies identified millimeter-scale, monolayer films with 1-2% Zn as dopants. Zinc doping suppresses n-type conductivity in MoS2 and shifts its Fermi level downwards. The stability and p-type nature of Zn dopants were further confirmed by density-functional-theory calculations of formation energies and electronic band structures. The electrical transport properties of Zn-MoS2 films can be influenced by stoichiometry, and p-type gate transfer characteristics were realized by thermal treatment under a sulfur atmosphere. Our work highlights transition-metal doping followed by sulfur vacancy elimination in CVD grown films as a promising route for achieving large area p-type transition metal dichalcogenide films that are essential for practical applications in electronics and optoelectronics.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(5 Pt 1): 051604, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11414913

RESUMO

In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-mediated attractions between (highly) similarly charged planes. By adopting an elastic theory, we show that the total attractive force between them can be (approximately) decomposed into a short-ranged and a long-ranged component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-ranged (fluctuation-induced) attraction into account and show how the fractional power law, which scales as d(-7/2) for large interplanar distance d at zero temperature, crosses over to the classical regime d(-3) via an intermediate regime of d(-2).

12.
Philos Trans A Math Phys Eng Sci ; 368(1932): 5483-97, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21041226

RESUMO

Electrons in graphene at low energy obey a two-dimensional Dirac equation, closely analogous to that of neutrinos. As a result, quantum mechanical effects when the system is confined or subjected to potentials at the nanoscale may be quite different from what happens in conventional electronic systems. In this article, we review recent progress on two systems where this is indeed the case: quantum rings and graphene electrons in a superlattice potential. In the former case, we demonstrate that the spectrum reveals signatures of 'effective time-reversal symmetry breaking', in which the spectra are most naturally interpreted in terms of effective magnetic flux contained in the ring, even when no real flux is present. A one-dimensional superlattice potential is shown to induce strong band-structure changes, allowing the number of Dirac points at zero energy to be manipulated by the strength and/or period of the potential. The emergence of new Dirac points is shown to be accompanied by strong signatures in the conduction properties of the system.

13.
Phys Rev Lett ; 103(4): 046809, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19659387

RESUMO

We investigate the effect of a periodic potential on the electronic states and conductance of graphene. It is demonstrated that for a cosine potential V(x) = V_{0}cos(G_{0}x), new zero energy states emerge whenever J0(2V_{0}/variant Planck's over 2piv_{F}G_{0}) = 0. The phase of the wave functions of these states is shown to be related to periodic solutions of the equation of motion of an overdamped particle in a periodic potential, subject to a periodic force. Numerical solutions of the Dirac equation confirm the existence of these states, and demonstrate the chirality of states in their vicinity. Conductance resonances are shown to accompany the emergence of these induced Dirac points.

14.
Phys Rev Lett ; 102(20): 206408, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19519051

RESUMO

We analyze the dissipative conductance of the zero-plateau quantum Hall state appearing in undoped graphene in strong magnetic fields. Charge transport in this state is assumed to be carried by a magnetic domain wall, which forms by hybridization of two counterpropagating edge states of opposing spin due to interactions. The resulting nonchiral edge mode is a Luttinger liquid of parameter K, which enters a gapped, perfectly conducting state below a critical value K_{c} approximately 1/2. Backscattering in this system involves spin flip, so that interaction with localized magnetic moments generates a finite resistivity Rxx via a "chiral Kondo effect." At finite temperatures T, Rxx(T) exhibits a crossover from metallic to insulating behavior as K is tuned across a threshold K_{MI}. For T --> 0, Rxx in the intermediate regime K_{MI} < K < K_{c} is finite, but diverges as K approaches K_{c}. This model provides a natural interpretation of recent experiments.

15.
Phys Rev Lett ; 101(26): 267002, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19437662

RESUMO

Directly observing a zero energy Majorana state in the vortex core of a chiral superconductor by tunneling spectroscopy requires energy resolution better than the spacing between core states delta0(2)/epsilon F. We show that, nevertheless, its existence can be decisively tested by comparing the temperature-broadened tunneling conductance of a vortex with that of an antivortex even at temperatures T >> delta0(2)/epsilon F.

16.
Phys Rev Lett ; 101(4): 046804, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18764355

RESUMO

We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.

17.
Phys Rev Lett ; 99(11): 116802, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17930459

RESUMO

We study RKKY interactions between local magnetic moments for both doped and undoped graphene. In the former case interactions for moments located on definite sublattices fall off as 1/R2, whereas for those placed at interstitial sites they decay as 1/R3. The interactions are primarily (anti)ferromagnetic for moments on (opposite) equivalent sublattices, suggesting that at low temperature dilute magnetic moments embedded in graphene can order into a state analogous to that of a dilute antiferromagnet. In the undoped case we find no net magnetic moment in the ground state, and demonstrate numerically this effect for ribbons, suggesting the possibility of an unusual spin-transfer device.

18.
Phys Rev Lett ; 97(11): 116805, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17025918

RESUMO

We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer quantum Hall regime supports a nonchiral Luttinger liquid at an armchair edge. This behavior arises due to the unusual dispersion of the noninteracting edge states, causing a crossing of bands with different valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged excitations, and has a power law tunneling I-V with a nonintegral exponent. In proximity to a bulk lead, the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state.

19.
Phys Rev Lett ; 94(22): 220402, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-16090369

RESUMO

We investigate the zero-temperature phases of bosons in a one-dimensional optical lattice with an explicit tunnel coupling to a Bose-condensed particle reservoir. Renormalization group analysis of this system is shown to reveal three phases: one in which the linear system is fully phase locked to the reservoir; one in which Josephson vortices between the one-dimensional system and the particle reservoir deconfine due to quantum fluctuations, leading to a decoupled state in which the one-dimensional system is metallic; and one in which the one-dimensional system is in a Mott insulating state.

20.
Phys Rev Lett ; 95(15): 156802, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16241749

RESUMO

Recent experiments on quantum Hall bilayers near total filling factor 1 have demonstrated that they support an imperfect two-dimensional superfluidity, in which there is nearly dissipationless transport at nonvanishing temperature observed both in counterflow resistance and interlayer tunneling. We argue that this behavior may be understood in terms of a coherence network induced in the bilayer by disorder, in which an incompressible, coherent state exists in narrow regions separating puddles of dense vortex-antivortex pairs. A renormalization group analysis shows that it is appropriate to describe the system as a vortex liquid. We demonstrate that the dynamics of the nodes of the network leads to a power law temperature dependence of the tunneling resistance, whereas thermally activated hops of vortices across the links control the counterflow resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA