Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34850822

RESUMO

Gene co-expression networks (GCNs) provide multiple benefits to molecular research including hypothesis generation and biomarker discovery. Transcriptome profiles serve as input for GCN construction and are derived from increasingly larger studies with samples across multiple experimental conditions, treatments, time points, genotypes, etc. Such experiments with larger numbers of variables confound discovery of true network edges, exclude edges and inhibit discovery of context (or condition) specific network edges. To demonstrate this problem, a 475-sample dataset is used to show that up to 97% of GCN edges can be misleading because correlations are false or incorrect. False and incorrect correlations can occur when tests are applied without ensuring assumptions are met, and pairwise gene expression may not meet test assumptions if the expression of at least one gene in the pairwise comparison is a function of multiple confounding variables. The 'one-size-fits-all' approach to GCN construction is therefore problematic for large, multivariable datasets. Recently, the Knowledge Independent Network Construction toolkit has been used in multiple studies to provide a dynamic approach to GCN construction that ensures statistical tests meet assumptions and confounding variables are addressed. Additionally, it can associate experimental context for each edge of the network resulting in context-specific GCNs (csGCNs). To help researchers recognize such challenges in GCN construction, and the creation of csGCNs, we provide a review of the workflow.


Assuntos
Redes Reguladoras de Genes , Transcriptoma
2.
BMC Bioinformatics ; 23(1): 156, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501696

RESUMO

BACKGROUND: Quantification of gene expression from RNA-seq data is a prerequisite for transcriptome analysis such as differential gene expression analysis and gene co-expression network construction. Individual RNA-seq experiments are larger and combining multiple experiments from sequence repositories can result in datasets with thousands of samples. Processing hundreds to thousands of RNA-seq data can result in challenges related to data management, access to sufficient computational resources, navigation of high-performance computing (HPC) systems, installation of required software dependencies, and reproducibility. Processing of larger and deeper RNA-seq experiments will become more common as sequencing technology matures. RESULTS: GEMmaker, is a nf-core compliant, Nextflow workflow, that quantifies gene expression from small to massive RNA-seq datasets. GEMmaker ensures results are highly reproducible through the use of versioned containerized software that can be executed on a single workstation, institutional compute cluster, Kubernetes platform or the cloud. GEMmaker supports popular alignment and quantification tools providing results in raw and normalized formats. GEMmaker is unique in that it can scale to process thousands of local or remote stored samples without exceeding available data storage. CONCLUSIONS: Workflows that quantify gene expression are not new, and many already address issues of portability, reusability, and scale in terms of access to CPUs. GEMmaker provides these benefits and adds the ability to scale despite low data storage infrastructure. This allows users to process hundreds to thousands of RNA-seq samples even when data storage resources are limited. GEMmaker is freely available and fully documented with step-by-step setup and execution instructions.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA-Seq , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
3.
BMC Genomics ; 23(1): 350, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524179

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer death in both men and women. The most common lung cancer subtype is non-small cell lung carcinoma (NSCLC) comprising about 85% of all cases. NSCLC can be further divided into three subtypes: adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large cell lung carcinoma. Specific genetic mutations and epigenetic aberrations play an important role in the developmental transition to a specific tumor subtype. The elucidation of normal lung versus lung tumor gene expression patterns and regulatory targets yields biomarker systems that discriminate lung phenotypes (i.e., biomarkers) and provide a foundation for the discovery of normal and aberrant gene regulatory mechanisms. RESULTS: We built condition-specific gene co-expression networks (csGCNs) for normal lung, LUAD, and LUSC conditions. Then, we integrated normal lung tissue-specific gene regulatory networks (tsGRNs) to elucidate control-target biomarker systems for normal and cancerous lung tissue. We characterized co-expressed gene edges, possibly under common regulatory control, for relevance in lung cancer. CONCLUSIONS: Our approach demonstrates the ability to elucidate csGCN:tsGRN merged biomarker systems based on gene expression correlation and regulation. The biomarker systems we describe can be used to classify and further describe lung specimens. Our approach is generalizable and can be used to discover and interpret complex gene expression patterns for any condition or species.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico
4.
Nucleic Acids Res ; 47(D1): D1137-D1145, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357347

RESUMO

The Genome Database for Rosaceae (GDR, https://www.rosaceae.org) is an integrated web-based community database resource providing access to publicly available genomics, genetics and breeding data and data-mining tools to facilitate basic, translational and applied research in Rosaceae. The volume of data in GDR has increased greatly over the last 5 years. The GDR now houses multiple versions of whole genome assembly and annotation data from 14 species, made available by recent advances in sequencing technology. Annotated and searchable reference transcriptomes, RefTrans, combining peer-reviewed published RNA-Seq as well as EST datasets, are newly available for major crop species. Significantly more quantitative trait loci, genetic maps and markers are available in MapViewer, a new visualization tool that better integrates with other pages in GDR. Pathways can be accessed through the new GDR Cyc Pathways databases, and synteny among the newest genome assemblies from eight species can be viewed through the new synteny browser, SynView. Collated single-nucleotide polymorphism diversity data and phenotypic data from publicly available breeding datasets are integrated with other relevant data. Also, the new Breeding Information Management System allows breeders to upload, manage and analyze their private breeding data within the secure GDR server with an option to release data publicly.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma de Planta/genética , Genômica/métodos , Rosaceae/genética , Biologia Computacional/estatística & dados numéricos , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Armazenamento e Recuperação da Informação/métodos , Internet , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Rosaceae/classificação , Especificidade da Espécie , Sintenia , Fatores de Tempo , Interface Usuário-Computador
5.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244875

RESUMO

Lentil (Lens culinaris Medikus) is an important source of protein for people in developing countries. Aphanomyces root rot (ARR) has emerged as one of the most devastating diseases affecting lentil production. In this study, we applied two complementary quantitative trait loci (QTL) analysis approaches to unravel the genetic architecture underlying this complex trait. A recombinant inbred line (RIL) population and an association mapping population were genotyped using genotyping by sequencing (GBS) to discover novel single nucleotide polymorphisms (SNPs). QTL mapping identified 19 QTL associated with ARR resistance, while association mapping detected 38 QTL and highlighted accumulation of favorable haplotypes in most of the resistant accessions. Seven QTL clusters were discovered on six chromosomes, and 15 putative genes were identified within the QTL clusters. To validate QTL mapping and genome-wide association study (GWAS) results, expression analysis of five selected genes was conducted on partially resistant and susceptible accessions. Three of the genes were differentially expressed at early stages of infection, two of which may be associated with ARR resistance. Our findings provide valuable insight into the genetic control of ARR, and genetic and genomic resources developed here can be used to accelerate development of lentil cultivars with high levels of partial resistance to ARR.


Assuntos
Aphanomyces/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Lens (Planta)/genética , Lens (Planta)/microbiologia , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Análise de Dados , Regulação da Expressão Gênica de Plantas , Genética Populacional , Haplótipos/genética , Desequilíbrio de Ligação/genética , Fenótipo , Doenças das Plantas/microbiologia
6.
Nucleic Acids Res ; 42(Database issue): D1229-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203703

RESUMO

CottonGen (http://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, visualization and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of Gossypium raimondii are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Gossypium/genética , Cruzamento , Etiquetas de Sequências Expressas , Genes de Plantas , Marcadores Genéticos , Genômica , Internet , Locos de Características Quantitativas
7.
Nucleic Acids Res ; 42(Database issue): D1237-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225320

RESUMO

The Genome Database for Rosaceae (GDR, http:/www.rosaceae.org), the long-standing central repository and data mining resource for Rosaceae research, has been enhanced with new genomic, genetic and breeding data, and improved functionality. Whole genome sequences of apple, peach and strawberry are available to browse or download with a range of annotations, including gene model predictions, aligned transcripts, repetitive elements, polymorphisms, mapped genetic markers, mapped NCBI Rosaceae genes, gene homologs and association of InterPro protein domains, GO terms and Kyoto Encyclopedia of Genes and Genomes pathway terms. Annotated sequences can be queried using search interfaces and visualized using GBrowse. New expressed sequence tag unigene sets are available for major genera, and Pathway data are available through FragariaCyc, AppleCyc and PeachCyc databases. Synteny among the three sequenced genomes can be viewed using GBrowse_Syn. New markers, genetic maps and extensively curated qualitative/Mendelian and quantitative trait loci are available. Phenotype and genotype data from breeding projects and genetic diversity projects are also included. Improved search pages are available for marker, trait locus, genetic diversity and publication data. New search tools for breeders enable selection comparison and assistance with breeding decision making.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Rosaceae/genética , Cruzamento , Genes de Plantas , Marcadores Genéticos , Variação Genética , Genômica , Internet , Locos de Características Quantitativas
8.
PLoS One ; 19(3): e0297015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446822

RESUMO

Gene expression is highly impacted by the environment and can be reflective of past events that affected developmental processes. It is therefore expected that gene expression can serve as a signal of a current or future phenotypic traits. In this paper we identify sets of genes, which we call Prognostic Transcriptomic Biomarkers (PTBs), that can predict firmness in Malus domestica (apple) fruits. In apples, all individuals of a cultivar are clones, and differences in fruit quality are due to the environment. The apples transcriptome responds to these differences in environment, which makes PTBs an attractive predictor of future fruit quality. PTBs have the potential to enhance supply chain efficiency, reduce crop loss, and provide higher and more consistent quality for consumers. However, several questions must be addressed. In this paper we answer the question of which of two common modeling approaches, Random Forest or ElasticNet, outperforms the other. We answer if PTBs with few genes are efficient at predicting traits. This is important because we need few genes to perform qPCR, and we answer the question if qPCR is a cost-effective assay as input for PTBs modeled using high-throughput RNA-seq. To do this, we conducted a pilot study using fruit texture in the 'Gala' variety of apples across several postharvest storage regiments. Fruit texture in 'Gala' apples is highly controllable by post-harvest treatments and is therefore a good candidate to explore the use of PTBs. We find that the RandomForest model is more consistent than an ElasticNet model and is predictive of firmness (r2 = 0.78) with as few as 15 genes. We also show that qPCR is reasonably consistent with RNA-seq in a follow up experiment. Results are promising for PTBs, yet more work is needed to ensure that PTBs are robust across various environmental conditions and storage treatments.


Assuntos
Malus , Humanos , Malus/genética , Frutas/genética , Transcriptoma , Projetos Piloto , Perfilação da Expressão Gênica
9.
PLoS One ; 19(6): e0306187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905271

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0297015.].

10.
Plant Physiol ; 156(3): 1244-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21606319

RESUMO

One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species.


Assuntos
Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Oryza/genética , Zea mays/genética , Análise por Conglomerados , Fenótipo
11.
BMC Genomics ; 12: 413, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21846342

RESUMO

BACKGROUND: The fermented dried seeds of Theobroma cacao (cacao tree) are the main ingredient in chocolate. World cocoa production was estimated to be 3 million tons in 2010 with an annual estimated average growth rate of 2.2%. The cacao bean production industry is currently under threat from a rise in fungal diseases including black pod, frosty pod, and witches' broom. In order to address these issues, genome-sequencing efforts have been initiated recently to facilitate identification of genetic markers and genes that could be utilized to accelerate the release of robust T. cacao cultivars. However, problems inherent with assembly and resolution of distal regions of complex eukaryotic genomes, such as gaps, chimeric joins, and unresolvable repeat-induced compressions, have been unavoidably encountered with the sequencing strategies selected. RESULTS: Here, we describe the construction of a BAC-based integrated genetic-physical map of the T. cacao cultivar Matina 1-6 which is designed to augment and enhance these sequencing efforts. Three BAC libraries, each comprised of 10× coverage, were constructed and fingerprinted. 230 genetic markers from a high-resolution genetic recombination map and 96 Arabidopsis-derived conserved ortholog set (COS) II markers were anchored using pooled overgo hybridization. A dense tile path consisting of 29,383 BACs was selected and end-sequenced. The physical map consists of 154 contigs and 4,268 singletons. Forty-nine contigs are genetically anchored and ordered to chromosomes for a total span of 307.2 Mbp. The unanchored contigs (105) span 67.4 Mbp and therefore the estimated genome size of T. cacao is 374.6 Mbp. A comparative analysis with A. thaliana, V. vinifera, and P. trichocarpa suggests that comparisons of the genome assemblies of these distantly related species could provide insights into genome structure, evolutionary history, conservation of functional sites, and improvements in physical map assembly. A comparison between the two T. cacao cultivars Matina 1-6 and Criollo indicates a high degree of collinearity in their genomes, yet rearrangements were also observed. CONCLUSIONS: The results presented in this study are a stand-alone resource for functional exploitation and enhancement of Theobroma cacao but are also expected to complement and augment ongoing genome-sequencing efforts. This resource will serve as a template for refinement of the T. cacao genome through gap-filling, targeted re-sequencing, and resolution of repetitive DNA arrays.


Assuntos
Cacau/genética , Mapeamento Físico do Cromossomo/métodos , Cromossomos Artificiais Bacterianos/genética , Mapeamento de Sequências Contíguas , Marcadores Genéticos/genética , Genoma de Planta/genética , Alinhamento de Sequência , Sitios de Sequências Rotuladas
12.
BMC Genomics ; 12: 379, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21794110

RESUMO

BACKGROUND: BAC-based physical maps provide for sequencing across an entire genome or a selected sub-genomic region of biological interest. Such a region can be approached with next-generation whole-genome sequencing and assembly as if it were an independent small genome. Using the minimum tiling path as a guide, specific BAC clones representing the prioritized genomic interval are selected, pooled, and used to prepare a sequencing library. RESULTS: This pooled BAC approach was taken to sequence and assemble a QTL-rich region, of ~3 Mbp and represented by twenty-seven BACs, on linkage group 5 of the Theobroma cacao cv. Matina 1-6 genome. Using various mixtures of read coverages from paired-end and linear 454 libraries, multiple assemblies of varied quality were generated. Quality was assessed by comparing the assembly of 454 reads with a subset of ten BACs individually sequenced and assembled using Sanger reads. A mixture of reads optimal for assembly was identified. We found, furthermore, that a quality assembly suitable for serving as a reference genome template could be obtained even with a reduced depth of sequencing coverage. Annotation of the resulting assembly revealed several genes potentially responsible for three T. cacao traits: black pod disease resistance, bean shape index, and pod weight. CONCLUSIONS: Our results, as with other pooled BAC sequencing reports, suggest that pooling portions of a minimum tiling path derived from a BAC-based physical map is an effective method to target sub-genomic regions for sequencing. While we focused on a single QTL region, other QTL regions of importance could be similarly sequenced allowing for biological discovery to take place before a high quality whole-genome assembly is completed.


Assuntos
Cacau/genética , Cromossomos Artificiais Bacterianos , Genoma de Planta , Locos de Características Quantitativas , Biblioteca Genômica , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Plant Physiol ; 154(1): 13-24, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20668062

RESUMO

Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Oryza/genética , Análise por Conglomerados , Sondas de DNA/metabolismo , Loci Gênicos/genética , Internet , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
14.
BMC Genom Data ; 22(1): 17, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044788

RESUMO

BACKGROUND: Gene expression is potentially an important heritable quantitative trait that mediates between genetic variation and higher-level complex phenotypes through time and condition-dependent regulatory interactions. Therefore, we sought to explore both the genomic and condition-specific characteristics of gene expression heritability within the context of chromosomal structure. RESULTS: Heritability was estimated for biological gene expression using a diverse, 84-line, Oryza sativa (rice) population under optimal and salt-stressed conditions. Overall, 5936 genes were found to have heritable expression regardless of condition and 1377 genes were found to have heritable expression only during salt stress. These genes with salt-specific heritable expression are enriched for functional terms associated with response to stimulus and transcription factor activity. Additionally, we discovered that highly and lowly expressed genes, and genes with heritable expression are distributed differently along the chromosomes in patterns that follow previously identified high-throughput chromosomal conformation capture (Hi-C) A/B chromatin compartments. Furthermore, multiple genomic hot-spots enriched for genes with salt-specific heritability were identified on chromosomes 1, 4, 6, and 8. These hotspots were found to contain genes functionally enriched for transcriptional regulation and overlaps with a previously identified major QTL for salt-tolerance in rice. CONCLUSIONS: Investigating the heritability of traits, and in-particular gene expression traits, is important towards developing a basic understanding of how regulatory networks behave across a population. This work provides insights into spatial patterns of heritable gene expression at the chromosomal level.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Oryza/genética , Estresse Salino/genética , Locos de Características Quantitativas/genética
15.
Front Plant Sci ; 12: 609684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220875

RESUMO

Estimating maturity in pome fruits is a critical task that directs virtually all postharvest supply chain decisions. This is especially important for European pear (Pyrus communis) cultivars because losses due to spoilage and senescence must be minimized while ensuring proper ripening capacity is achieved (in part by satisfying a fruit chilling requirement). Reliable methods are lacking for accurate estimation of pear fruit maturity, and because ripening is maturity dependent it makes predicting ripening capacity a challenge. In this study of the European pear cultivar 'd'Anjou', we sorted fruit at harvest based upon on-tree fruit position to build contrasts of maturity. Our sorting scheme showed clear contrasts of maturity between canopy positions, yet there was substantial overlap in the distribution of values for the index of absorbance difference (I AD ), a non-destructive spectroscopic measurement that has been used as a proxy for pome fruit maturity. This presented an opportunity to explore a contrast of maturity that was more subtle than I AD could differentiate, and thus guided our subsequent transcriptome analysis of tissue samples taken at harvest and during storage. Using a novel approach that tests for condition-specific differences of co-expressed genes, we discovered genes with a phased character that mirrored our sorting scheme. The expression patterns of these genes are associated with fruit quality and ripening differences across the experiment. Functional profiles of these co-expressed genes are concordant with previous findings, and also offer new clues, and thus hypotheses, about genes involved in pear fruit quality, maturity, and ripening. This work may lead to new tools for enhanced postharvest management based on activity of gene co-expression modules, rather than individual genes. Further, our results indicate that modules may have utility within specific windows of time during postharvest management of 'd'Anjou' pear.

16.
Front Big Data ; 4: 582468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748749

RESUMO

Advanced imaging and DNA sequencing technologies now enable the diverse biology community to routinely generate and analyze terabytes of high resolution biological data. The community is rapidly heading toward the petascale in single investigator laboratory settings. As evidence, the single NCBI SRA central DNA sequence repository contains over 45 petabytes of biological data. Given the geometric growth of this and other genomics repositories, an exabyte of mineable biological data is imminent. The challenges of effectively utilizing these datasets are enormous as they are not only large in the size but also stored in geographically distributed repositories in various repositories such as National Center for Biotechnology Information (NCBI), DNA Data Bank of Japan (DDBJ), European Bioinformatics Institute (EBI), and NASA's GeneLab. In this work, we first systematically point out the data-management challenges of the genomics community. We then introduce Named Data Networking (NDN), a novel but well-researched Internet architecture, is capable of solving these challenges at the network layer. NDN performs all operations such as forwarding requests to data sources, content discovery, access, and retrieval using content names (that are similar to traditional filenames or filepaths) and eliminates the need for a location layer (the IP address) for data management. Utilizing NDN for genomics workflows simplifies data discovery, speeds up data retrieval using in-network caching of popular datasets, and allows the community to create infrastructure that supports operations such as creating federation of content repositories, retrieval from multiple sources, remote data subsetting, and others. Named based operations also streamlines deployment and integration of workflows with various cloud platforms. Our contributions in this work are as follows 1) we enumerate the cyberinfrastructure challenges of the genomics community that NDN can alleviate, and 2) we describe our efforts in applying NDN for a contemporary genomics workflow (GEMmaker) and quantify the improvements. The preliminary evaluation shows a sixfold speed up in data insertion into the workflow. 3) As a pilot, we have used an NDN naming scheme (agreed upon by the community and discussed in Section 4) to publish data from broadly used data repositories including the NCBI SRA. We have loaded the NDN testbed with these pre-processed genomes that can be accessed over NDN and used by anyone interested in those datasets. Finally, we discuss our continued effort in integrating NDN with cloud computing platforms, such as the Pacific Research Platform (PRP). The reader should note that the goal of this paper is to introduce NDN to the genomics community and discuss NDN's properties that can benefit the genomics community. We do not present an extensive performance evaluation of NDN-we are working on extending and evaluating our pilot deployment and will present systematic results in a future work.

17.
Front Vet Sci ; 7: 559279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195534

RESUMO

Specifically designed gene expression studies can be used to prioritize candidate genes and identify novel biomarkers affecting resilience against mastitis and other diseases in dairy cattle. The primary goal of this study was to assess whether specific peripheral leukocyte genes expressed differentially in a previous study of dairy cattle with postpartum disease, also would be expressed differentially in peripheral leukocytes from a diverse set of different dairy cattle with moderate to severe clinical mastitis. Four genes were selected for this study due to their differential expression in a previous transcriptomic analysis of circulating leukocytes from dairy cows with and without evidence of early postpartum disease. An additional 15 genes were included based on their cellular, immunologic, and inflammatory functions associated with resistance and tolerance to mastitis. This fixed cohort study was conducted on a conventional dairy in Washington state. Cows >50 days in milk (DIM) with mastitis (n = 12) were enrolled along with healthy cows (n = 8) selected to match the DIM and lactation numbers of mastitic cows. Blood was collected for a complete blood count (CBC), serum biochemistry, leukocyte isolation, and RNA extraction on the day of enrollment and twice more at 6 to 8-days intervals. Latent class analysis was performed to discriminate healthy vs. mastitic cows and to describe disease resolution. RNA samples were processed by the Primate Diagnostic Services Laboratory (University of Washington, Seattle, WA). Gene expression analysis was performed using the Nanostring System (Nanostring Technologies, Seattle, Washington, USA). Of the four genes (C5AR1, CATHL6, LCN2, and PGLYRP1) with evidence of upregulation in cows with mastitis, three of those genes (CATHL6, LCN2, and PGLYRP1) were investigated due to their previously identified association with postpartum disease. These genes are responsible for immunomodulatory molecules that selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses. Although further research is warranted to explain their functional mechanisms and bioactivity in cattle, our findings suggest that these conserved elements of innate immunity have the potential to bridge disease states and target tissues in diverse dairy populations.

18.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32621602

RESUMO

Online biological databases housing genomics, genetic and breeding data can be constructed using the Tripal toolkit. Tripal is an open-source, internationally developed framework that implements FAIR data principles and is meant to ease the burden of constructing such websites for research communities. Use of a common, open framework improves the sustainability and manageability of such as site. Site developers can create extensions for their site and in turn share those extensions with others. One challenge that community databases often face is the need to provide tools for their users that analyze increasingly larger datasets using multiple software tools strung together in a scientific workflow on complicated computational resources. The Tripal Galaxy module, a 'plug-in' for Tripal, meets this need through integration of Tripal with the Galaxy Project workflow management system. Site developers can create workflows appropriate to the needs of their community using Galaxy and then share those for execution on their Tripal sites via automatically constructed, but configurable, web forms or using an application programming interface to power web-based analytical applications. The Tripal Galaxy module helps reduce duplication of effort by allowing site developers to spend time constructing workflows and building their applications rather than rebuilding infrastructure for job management of multi-step applications.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Internet , Software , Biologia Computacional
19.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688940

RESUMO

Tripal is an open-source, resource-efficient toolkit for construction of genomic, genetic and breeding databases. It facilitates development of biological websites by providing tools to integrate and display biological data using the generic database schema, Chado, together with Drupal, a popular website creation and content management system. Tripal MapViewer is a new interactive tool for visualizing genetic map data. Developed as a Tripal replacement for Comparative Map Viewer (CMap), it enables visualization of entire maps or linkage groups and features such as molecular markers, quantitative trait loci (QTLs) and heritable phenotypic markers. It also provides graphical comparison of maps sharing the same markers as well as dot plot and correspondence matrices. MapViewer integrates directly with the Tripal application programming interface framework, improving data searching capability and providing a more seamless experience for site visitors. The Tripal MapViewer interface can be integrated in any Tripal map page and linked from any Tripal page for markers, QTLs, heritable morphological markers or genes. Configuration of the display is available through a control panel and the administration interface. The administration interface also allows configuration of the custom database query for building materialized views, providing better performance and flexibility in the way data is stored in the Chado database schema. MapViewer is implemented with the D3.js technology and is currently being used at the Genome Database for Rosaceae (https://www.rosaceae.org), CottonGen (https://www.cottongen.org), Citrus Genome Database (https://citrusgenomedb.org), Vaccinium Genome Database (https://www.vaccinium.org) and Cool Season Food Legume Database (https://www.coolseasonfoodlegume.org). It is also currently in development on the Hardwood Genomics Web (https://hardwoodgenomics.org) and TreeGenes (https://treegenesdb.org). Database URL: https://gitlab.com/mainlabwsu/tripal_map.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Internet , Locos de Características Quantitativas , Rosaceae/genética , Interface Usuário-Computador , Genômica
20.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31328773

RESUMO

Community biological databases provide an important online resource for both public and private data, analysis tools and community engagement. These sites house genomic, transcriptomic, genetic, breeding and ancillary data for specific species, families or clades. Due to the complexity and increasing quantities of these data, construction of online resources is increasingly difficult especially with limited funding and access to technical expertise. Furthermore, online repositories are expected to promote FAIR data principles (findable, accessible, interoperable and reusable) that presents additional challenges. The open-source Tripal database toolkit seeks to mitigate these challenges by creating both the software and an interactive community of developers for construction of online community databases. Additionally, through coordinated, distributed co-development, Tripal sites encourage community-wide sustainability. Here, we report the release of Tripal version 3 that improves data accessibility and data sharing through systematic use of controlled vocabularies (CVs). Tripal uses the community-developed Chado database as a default data store, but now provides tools to support other data stores, while ensuring that CVs remain the central organizational structure for the data. A new site developer can use Tripal to develop a basic site with little to no programming, with the ability to integrate other data types using extension modules and the Tripal application programming interface. A thorough online User's Guide and Developer's Handbook are available at http://tripal.info, providing download, installation and step-by-step setup instructions.


Assuntos
Biota/genética , Bases de Dados Genéticas , Disseminação de Informação , Internet , Software , Transcriptoma , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA