Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 156(3): 413-27, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485452

RESUMO

The response to DNA damage, which regulates nuclear processes such as DNA repair, transcription, and cell cycle, has been studied thoroughly. However, the cytoplasmic response to DNA damage is poorly understood. Here, we demonstrate that DNA damage triggers dramatic reorganization of the Golgi, resulting in its dispersal throughout the cytoplasm. We further show that DNA-damage-induced Golgi dispersal requires GOLPH3/MYO18A/F-actin and the DNA damage protein kinase, DNA-PK. In response to DNA damage, DNA-PK phosphorylates GOLPH3, resulting in increased interaction with MYO18A, which applies a tensile force to the Golgi. Interference with the Golgi DNA damage response by depletion of DNA-PK, GOLPH3, or MYO18A reduces survival after DNA damage, whereas overexpression of GOLPH3, as is observed frequently in human cancers, confers resistance to killing by DNA-damaging agents. Identification of the DNA-damage-induced Golgi response reveals an unexpected pathway through DNA-PK, GOLPH3, and MYO18A that regulates cell survival following DNA damage.


Assuntos
Dano ao DNA , Proteína Quinase Ativada por DNA/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Miosinas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Fosforilação , Ratos , Alinhamento de Sequência
2.
Cell ; 139(2): 337-51, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837035

RESUMO

Golgi membranes, from yeast to humans, are uniquely enriched in phosphatidylinositol-4-phosphate (PtdIns(4)P), although the role of this lipid remains poorly understood. Using a proteomic lipid-binding screen, we identify the Golgi protein GOLPH3 (also called GPP34, GMx33, MIDAS, or yeast Vps74p) as a PtdIns(4)P-binding protein that depends on PtdIns(4)P for its Golgi localization. We further show that GOLPH3 binds the unconventional myosin MYO18A, thus connecting the Golgi to F-actin. We demonstrate that this linkage is necessary for normal Golgi trafficking and morphology. The evidence suggests that GOLPH3 binds to PtdIns(4)P-rich trans-Golgi membranes and MYO18A conveying a tensile force required for efficient tubule and vesicle formation. Consequently, this tensile force stretches the Golgi into the extended ribbon observed by fluorescence microscopy and the familiar flattened form observed by electron microscopy.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Técnicas de Silenciamento de Genes , Complexo de Golgi/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Miosinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Transportadoras/metabolismo
3.
J Lipid Res ; 60(2): 269-275, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30266835

RESUMO

GOLPH3 is a peripheral membrane protein localized to the Golgi and its vesicles, but its purpose had been unclear. We found that GOLPH3 binds specifically to the phosphoinositide phosphatidylinositol(4)phosphate [PtdIns(4)P], which functions at the Golgi to promote vesicle exit for trafficking to the plasma membrane. PtdIns(4)P is enriched at the trans-Golgi and so recruits GOLPH3. Here, a GOLPH3 complex is formed when it binds to myosin18A (MYO18A), which binds F-actin. This complex generates a pulling force to extract vesicles from the Golgi; interference with this GOLPH3 complex results in dramatically reduced vesicle trafficking. The GOLPH3 complex has been identified as a driver of cancer in humans, likely through multiple mechanisms that activate secretory trafficking. In this review, we summarize the literature that identifies the nature of the GOLPH3 complex and its role in cancer. We also consider the GOLPH3 complex as a hub with the potential to reveal regulation of the Golgi and suggest the possibility of GOLPH3 complex inhibition as a therapeutic approach in cancer.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Transporte Biológico , Humanos
4.
J Lipid Res ; 60(4): 747-752, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718284

RESUMO

The discovery of the phosphatidylinositol-3-kinase (PI3K) pathway was a major advance in understanding growth factor signaling. The high frequency of PI3K pathway mutations in many cancers has encouraged a new field targeting cancer driver mutations. Although there have been many successes, targeting PI3K itself has proven challenging, in part because of its multiple isoforms with distinct roles. Despite promising preclinical results, development of PI3K inhibitors as pharmacologic anticancer agents has been limited by modest single-agent efficacy and significant adverse effects. If we could overcome these limitations, PI3K inhibitors would be a powerful cancer-fighting tool. Data from phase III clinical trials yields insight into some of the problems with PI3K inhibitors. Recent advances have shed light on the mechanisms of tumor resistance to PI3K inhibitors via feedback pathways that cause elevated insulin levels that then activate the same PI3K pathways that are the targets of inhibition. Improving our understanding of the complex regulatory feedback pathways that activate in response to PI3K inhibition will reveal ways to increase the efficacy of PI3K inhibitors and reduce adverse effects, increasing the usefulness of this class as a treatment option for multiple cancer types.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
5.
J Biol Chem ; 292(34): 14308-14309, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842476

RESUMO

Phosphatidylserine (PtdSer) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) have been implicated in the maintenance of caveolae, but direct evidence that these lipids are required for normal caveolar structure and dynamics in living cells has been lacking. A new study by Fairn and colleagues uses sophisticated tools to perturb specific lipids in living cells to assess the consequences for caveolae. This study demonstrates disparate roles for these lipids in the stability and mobility of caveolae and points the way for future work to understand how these lipids contribute to the biology of caveolae.


Assuntos
Cavéolas/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cavéolas/química , Caveolinas/química , Caveolinas/metabolismo , Membrana Celular/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas de Ligação a Fosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilserinas/química , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Transporte Vesicular
6.
Nature ; 451(7181): 964-9, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18288188

RESUMO

Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation. Here we show that O-GlcNAc transferase (OGT) harbours a previously unrecognized type of phosphoinositide-binding domain. After induction with insulin, phosphatidylinositol 3,4,5-trisphosphate recruits OGT from the nucleus to the plasma membrane, where the enzyme catalyses dynamic modification of the insulin signalling pathway by O-GlcNAc. This results in the alteration in phosphorylation of key signalling molecules and the attenuation of insulin signal transduction. Hepatic overexpression of OGT impairs the expression of insulin-responsive genes and causes insulin resistance and dyslipidaemia. These findings identify a molecular mechanism by which nutritional cues regulate insulin signalling through O-GlcNAc, and underscore the contribution of this modification to the aetiology of insulin resistance and type 2 diabetes.


Assuntos
Resistência à Insulina/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Fosfatidilinositóis/metabolismo , Sistemas do Segundo Mensageiro , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacologia , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Insulina/farmacologia , Metabolismo dos Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico , Sistemas do Segundo Mensageiro/efeitos dos fármacos
7.
Dev Biol ; 372(1): 17-27, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23000359

RESUMO

The Drosophila RhoGEF Pebble (Pbl) is required for cytokinesis and migration of mesodermal cells. In a screen for genes that could suppress migration defects in pbl mutants we identified the phosphatidylinositol phosphate (PtdInsP) regulator pi5k59B. Genetic interaction tests with other PtdInsP regulators suggested that PtdIns(4,5)P2 levels are important for mesoderm migration when Pbl is depleted. Consistent with this, the leading front of migrating mesodermal cells was enriched for PtdIns(4,5)P2. Given that Pbl contains a Pleckstrin Homology (PH) domain, a known PtdInsP-binding motif, we examined PtdInsP-binding of Pbl and the importance of the PH domain for Pbl function. In vitro lipid blot assays showed that Pbl binds promiscuously to PtdInsPs, with binding strength associated with the degree of phosphorylation. Pbl was also able to bind lipid vesicles containing PtdIns(4,5)P2 but binding was strongly reduced upon deletion of the PH domain. Similarly, in vivo, loss of the PH domain prevented localisation of Pbl to the cell cortex and severely affected several aspects of early mesoderm development, including flattening of the invaginated tube onto the ectoderm, extension of protrusions, and dorsal migration to form a monolayer. Pbl lacking the PH domain could still localise to the cytokinetic furrow, however, and cytokinesis failure was reduced in pbl(ΔPH) mutants. Taken together, our results support a model in which interaction of the PH-domain of Pbl with PtdIns(4,5)P2 helps localise it to the plasma membrane which is important for mesoderm migration.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mesoderma/metabolismo , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Movimento Celular , Drosophila/genética , Drosophila/metabolismo , Guanosina Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais
8.
J Biol Chem ; 287(33): 27637-47, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22745132

RESUMO

Hepatitis C virus (HCV) RNA replicates within the ribonucleoprotein complex, assembled on the endoplasmic reticulum (ER)-derived membranous structures closely juxtaposed to the lipid droplets that facilitate the post-replicative events of virion assembly and maturation. It is widely believed that the assembled virions piggy-back onto the very low density lipoprotein particles for secretion. Lipid phosphoinositides are important modulators of intracellular trafficking. Golgi-localized phosphatidylinositol 4-phosphate (PI4P) recruits proteins involved in Golgi trafficking to the Golgi membrane and promotes anterograde transport of secretory proteins. Here, we sought to investigate the role of Golgi-localized PI4P in the HCV secretion process. Depletion of the Golgi-specific PI4P pool by Golgi-targeted PI4P phosphatase hSac1 K2A led to significant reduction in HCV secretion without any effect on replication. We then examined the functional role of a newly identified PI4P binding protein GOLPH3 in the viral secretion process. GOLPH3 is shown to maintain a tensile force on the Golgi, required for vesicle budding via its interaction with an unconventional myosin, MYO18A. Silencing GOLPH3 led to a dramatic reduction in HCV virion secretion, as did the silencing of MYO18A. The reduction in virion secretion was accompanied by a concomitant accumulation of intracellular virions, suggesting a stall in virion egress. HCV-infected cells displayed a fragmented and dispersed Golgi pattern, implicating involvement in virion morphogenesis. These studies establish the role of PI4P and its interacting protein GOLPH3 in HCV secretion and strengthen the significance of the Golgi secretory pathway in this process.


Assuntos
Complexo de Golgi/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Liberação de Vírus/fisiologia , Transporte Biológico Ativo/genética , Linhagem Celular Tumoral , Complexo de Golgi/genética , Complexo de Golgi/virologia , Hepacivirus/genética , Hepatite C/genética , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Proteínas de Membrana/genética , Miosinas/genética , Miosinas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Vírion/genética , Vírion/metabolismo
9.
Cell Rep ; 41(4): 111538, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288700

RESUMO

Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.


Assuntos
Pró-Proteína Convertase 9 , S-Nitrosotióis , Camundongos , Animais , Proteínas/metabolismo , Oxirredutases/metabolismo , S-Nitrosotióis/metabolismo , Homeostase , Óxido Nítrico/metabolismo , Proteínas de Membrana
10.
J Cell Biol ; 170(3): 455-64, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16043515

RESUMO

Phosphoinositide (PI) 3-kinase is required for most insulin and insulin-like growth factor (IGF) 1-dependent cellular responses. The p85 regulatory subunit of PI 3-kinase is required to mediate the insulin-dependent recruitment of PI 3-kinase to the plasma membrane, yet mice with reduced p85 expression have increased insulin sensitivity. To further understand the role of p85, we examined IGF-1-dependent translocation of p85alpha by using a green fluorescence protein (GFP)-tagged p85alpha (EGFP-p85alpha). In response to IGF-1, but not to PDGF signaling, EGFP-p85alpha translocates to discrete foci in the cell. These foci contain the insulin receptor substrate (IRS) 1 adaptor molecule, and their formation requires the binding of p85 to IRS-1. Surprisingly, monomeric p85 is preferentially localized to these foci compared with the p85-p110 dimer, and these foci are not sites of phosphatidylinositol-3,4,5-trisphosphate production. Ultrastructural analysis reveals that p85-IRS-1 foci are cytosolic protein complexes devoid of membrane. These results suggest a mechanism of signal down-regulation of IRS-1 that is mediated by monomeric p85 through the formation of a sequestration complex between p85 and IRS-1.


Assuntos
Fosfatidilinositol 3-Quinases/fisiologia , Fosfoproteínas/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Citosol/metabolismo , Dimerização , Regulação para Baixo , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Substratos do Receptor de Insulina , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Subunidades Proteicas/metabolismo , Transporte Proteico , Receptor IGF Tipo 1/agonistas , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Tirosina/metabolismo
11.
Adv Biol Regul ; 75: 100661, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668661

RESUMO

The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.


Assuntos
Complexo de Golgi/patologia , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico/fisiologia , Vesículas Transportadoras
12.
Dev Cell ; 2(4): 407-10, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11970891

RESUMO

The 2002 Keystone Symposium on "Regulation of Cellular Responses by Lipid Mediators" provided a lively and active forum to discuss research in lipid signaling. This meeting review can provide only a glimpse into the diversity of research presented. Here we have chosen to highlight a group of exciting presentations describing novel features of the temporal and spatial regulation of phosphoinositides and their downstream targets.


Assuntos
Metabolismo dos Lipídeos , Fosfatidilinositol 3-Quinases/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Transdução de Sinais/fisiologia
13.
J Cell Biol ; 166(2): 205-11, 2004 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-15249580

RESUMO

The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Evolução Molecular , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/biossíntese , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Schizosaccharomyces/ultraestrutura
14.
Genes (Basel) ; 10(3)2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934642

RESUMO

The Golgi organelle duplicates its protein and lipid content to segregate evenly between two daughter cells after mitosis. However, how Golgi biogenesis is regulated during interphase remains largely unknown. Here we show that messenger RNA (mRNA) expression of GOLPH3 and GOLGA2, two genes encoding Golgi proteins, is induced specifically in G1 phase, suggesting a link between cell cycle regulation and Golgi growth. We have examined the role of E2F transcription factors, critical regulators of G1 to S progression of the cell cycle, in the expression of Golgi proteins during interphase. We show that promoter activity for GOLPH3, a Golgi protein that is also oncogenic, is induced by E2F1-3 and repressed by E2F7. Mutation of the E2F motifs present in the GOLPH3 promoter region abrogates E2F1-mediated induction of a GOLPH3 luciferase reporter construct. Furthermore, we identify a critical CREB/ATF element in the GOLPH3 promoter that is required for its steady state and ATF2-induced expression. Interestingly, depletion of GOLPH3 with small interfering RNA (siRNA) delays the G1 to S transition in synchronized U2OS cells. Taken together, our results reveal a link between cell cycle regulation and Golgi function, and suggest that E2F-mediated regulation of Golgi genes is required for the timely progression of the cell cycle.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Fatores de Transcrição E2F/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Animais , Sítios de Ligação , Ciclo Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Células NIH 3T3 , Fosfoproteínas/genética , Regiões Promotoras Genéticas
15.
Dev Cell ; 50(5): 573-585.e5, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31231041

RESUMO

Vesicle budding for Golgi-to-plasma membrane trafficking is a key step in secretion. Proteins that induce curvature of the Golgi membrane are predicted to be required, by analogy to vesicle budding from other membranes. Here, we demonstrate that GOLPH3, upon binding to the phosphoinositide PI4P, induces curvature of synthetic membranes in vitro and the Golgi in cells. Moreover, efficient Golgi-to-plasma membrane trafficking critically depends on the ability of GOLPH3 to curve the Golgi membrane. Interestingly, uncoupling of GOLPH3 from its binding partner MYO18A results in extensive curvature of Golgi membranes, producing dramatic tubulation of the Golgi, but does not support forward trafficking. Thus, forward trafficking from the Golgi to the plasma membrane requires the ability of GOLPH3 both to induce Golgi membrane curvature and to recruit MYO18A. These data provide fundamental insight into the mechanism of Golgi trafficking and into the function of the unique Golgi secretory oncoproteins GOLPH3 and MYO18A.


Assuntos
Complexo de Golgi/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Via Secretória , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Proteínas de Membrana/química , Miosinas/metabolismo , Fosfatidilinositóis/química , Ligação Proteica , Domínios Proteicos
16.
Curr Biol ; 15(15): 1407-12, 2005 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16085494

RESUMO

Phosphoinositides play important roles in regulating the cytoskeleton and vesicle trafficking, potentially important processes at the cleavage furrow. However, it remains unclear which, if any, of the phosphoinositides play a role during cytokinesis. A systematic analysis to determine if any of the phosphoinositides might be present or of functional importance at the cleavage furrow has not been published. Several studies hint at a possible role for one or more phosphoinositides at the cleavage furrow. The best of these are genetic data identifying mutations in phosphoinositide-modifying enzymes (a PtdIns(4)P-5-kinase in S. pombe and a PI-4-kinase in D. melanogaster) that interfere with cytokinesis. The genetic nature of these experiments leaves questions as to how direct may be their contribution to cytokinesis. Here we show that a single phosphoinositide, PtdIns(4,5)P2, specifically accumulates at the furrow. Interference with PtdIns(4,5)P2 interferes with adhesion of the plasma membrane to the contractile ring at the furrow. Finally, four distinct interventions to specifically interfere with PtdIns(4,5)P2 each impair cytokinesis. We conclude that PtdIns(4,5)P2 is present at the cleavage furrow and is required for normal cytokinesis at least in part because of a role in adhesion between the contractile ring and the plasma membrane.


Assuntos
Citocinese/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosfatidilinositol 4,5-Difosfato , Fosfolipase C gama/metabolismo , Proteínas/metabolismo
17.
Adv Biol Regul ; 67: 84-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942352

RESUMO

MYO18A is a divergent member of the myosin family characterized by the presence of an amino-terminal PDZ domain. MYO18A has been found in a few different complexes involved in intracellular transport processes. MYO18A is found in a complex with LURAP1 and MRCK that functions in retrograde treadmilling of actin. It also has been found in a complex with PAK2, ßPIX, and GIT1, functioning to transport that protein complex from focal adhesions to the leading edge. Finally, a high proportion of MYO18A is found in complex with GOLPH3 at the trans Golgi, where it functions to promote vesicle budding for Golgi-to-plasma membrane trafficking. Interestingly, MYO18A has been implicated as a cancer driver, as have other components of the GOLPH3 pathway. It remains uncertain as to whether or not MYO18A has intrinsic motor activity. While many questions remain, MYO18A is a fascinatingly unique myosin that is essential in higher organisms.


Assuntos
Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Miosinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico Ativo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/genética , Complexo de Golgi/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miosinas/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
18.
J Med Chem ; 61(23): 10463-10472, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30380865

RESUMO

Using a novel chemistry-based assay for identifying electrophilic natural products in unprocessed extracts, we identified the PI3-kinase/mTOR dual inhibitor neolymphostin A from Salinispora arenicola CNY-486. The method further showed that the vinylogous ester substituent on the neolymphostin core was the exact site for enzyme conjugation. Tandem MS/MS experiments on PI3Kα treated with the inhibitor revealed that neolymphostin covalently modified Lys802 with a shift in mass of +306 amu, corresponding to addition of the inhibitor and elimination of methanol. The binding pose of the inhibitor bound to PI3Kα was modeled, and hydrogen-deuterium exchange mass spectrometry experiments supported this model. Against a panel of kinases, neolymphostin showed good selectivity for PI3-kinase and mTOR. In addition, the natural product blocked AKT phosphorylation in live cells with an IC50 of ∼3 nM. Taken together, neolymphostin is the first reported example of a covalent kinase inhibitor from the bacterial domain of life.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ésteres/química , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/química , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Conformação Proteica , Quinolinas/metabolismo
19.
J Clin Invest ; 113(10): 1398-407, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15146237

RESUMO

E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/deficiência , Diabetes Mellitus Tipo 1/etiologia , Insuficiência Pancreática Exócrina/etiologia , Transativadores/deficiência , Fatores de Transcrição/deficiência , Animais , Apoptose , Diferenciação Celular , Divisão Celular , Replicação do DNA , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fator de Transcrição E2F2 , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Pâncreas/patologia , Transativadores/genética , Fatores de Transcrição/genética
20.
Curr Opin Cell Biol ; 45: 17-23, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28213314

RESUMO

The Golgi is generally recognized for its central role in the secretory pathway to orchestrate protein post-translational modification and trafficking of proteins and lipids to their final destination. Despite the common view of the Golgi as an inert sorting organelle, emerging data demonstrate that important signaling events occur at the Golgi, including those that regulate the trafficking function of the Golgi. The phosphatidylinositol-4-phosphate/GOLPH3/MYO18A/F-actin complex serves as a hub for signals that regulate Golgi trafficking function. Furthermore, the Golgi is increasingly appreciated for its important role in cell growth and in driving oncogenic transformation, as illuminated by the discovery that GOLPH3 and MYO18A are cancer drivers.


Assuntos
Complexo de Golgi/metabolismo , Metabolismo dos Lipídeos , Transporte Proteico , Transdução de Sinais , Animais , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA