Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-31827547

RESUMO

BACKGROUND: An alkalescent (pH 8.3) mineral water (AMW) of Hita basin, located in the northwestern part of Kyushu island in Japan, has been recognized for the unique quality of ingredients including highly concentrated silicic acid, sodium, potassium, and hydrogen carbonate. The biological effects of AMW intake were evaluated with a particular focus on its "antiobesity" properties through its modulation of the gut microbiota population. METHODS: Two groups of C57BL6/J mice (8-week-old male) were maintained with a standard diet and tap water (control: TWC group) or AMW (AMW group) for 6 months and the following outputs were quantitated: (1) food and water intake, (2) body weight (weekly), (3) body fat measurements by CT scan (monthly), (4) sera biochemical values (TG, ALT, AST, and ALP), and (5) UCP-1 mRNA in fat tissues (terminal point). Two groups of ICR mice (7-week-old male) were maintained with the same method and their feces were collected at the 0, 1st, 3rd, and 6th month at which time the population rates of gut microbiota were quantitated using metagenomic sequencing analysis of 16S-rRNA. RESULTS: Among all antiobesity testing items, even though a weekly dietary consumption was increased (p=0.012), both ratios of weight gain (p=1.21E - 10) and visceral fat accumulation (p=0.029) were significantly reduced in the AMW group. Other criteria including water intake (p=0.727), the amounts of total (p=0.1602), and subcutaneous fat accumulation (p=0.052) were within the margin of error and UCP-1 gene expression level (p=0.171) in the AMW group was 3.89-fold higher than that of TWC. Among 8 major gut bacteria families, Lactobacillaceae (increased, p=0.029) and Clostridiaceae (decreased, p=0.029) showed significant shift in the whole population. CONCLUSION: We observed significantly reduced (1) weight gaining ratio (average -1.86%, up to -3.3%), (2) visceral fat accumulation ratio (average -4.30%, up to -9.1%), and (3) changes in gut microbiota population. All these consequences could support the "health benefit" functionality of AMW.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29292401

RESUMO

BACKGROUND: The condensed fermentative extract of bonito (BoE), skipjack tuna (Katsuwonus pelamis), has claimed its health conditioning effects against lifestyle-related diseases such as hypertension and type 2 diabetes. METHODS: We evaluated the antiobesity and anti-inflammatory effects of BoE on mice fed a high-fat diet (HFD). Mice (9 weeks of age) were maintained for 11 weeks on HFD with or without BoE (50 mg or 500 mg/kg). RESULTS: Compared with untreated mice, BoE50 or BoE500 mice achieved maximum weight reductions of 7.4% (males) and 11.4% (females), and visceral fat in male BoE500 mice was more decreased among all mice (P = 0.00459). Furthermore, an antiobesity gene uncoupling protein-1 was significantly induced in the visceral fat tissues of male BoE500 (P = 0.0110) and female BoE50 and BoE500 mice (P = 0.0110 and P = 0.0110, resp.). Finally, we detected reduced amount of granulocyte-colony stimulating factor (P = 0.0250) in the sera of female BoE50 and interleukin- (IL-) 5 (P = 0.0120), IL-6 (P = 0.0118), and IL-13 (P = 0.0243) in female BoE500 mice. CONCLUSION: The antiobesity and anti-inflammatory effects of BoE were demonstrated with our examination system and any toxic adverse effects were not observed in mice during the 3-month investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA