Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Psychiatry ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866174

RESUMO

BACKGROUND: Increased vulnerability to stress is a major risk factor for several mood disorders, including major depressive disorder. Although cellular and molecular mechanisms associated with depressive behaviors following stress have been identified, little is known about the mechanisms that confer the vulnerability that predisposes individuals to future damage from chronic stress. METHODS: We used multisite in vivo neurophysiology in freely behaving male and female C57BL/6 mice (n = 12) to measure electrical brain network activity previously identified as indicating a latent stress vulnerability brain state. We combined this neurophysiological approach with single-cell RNA sequencing of the prefrontal cortex to identify distinct transcriptomic differences between groups of mice with inherent high and low stress vulnerability. RESULTS: We identified hundreds of differentially expressed genes (padjusted < .05) across 5 major cell types in animals with high and low stress vulnerability brain network activity. This unique analysis revealed that GABAergic (gamma-aminobutyric acidergic) neuron gene expression contributed most to the network activity of the stress vulnerability brain state. Upregulation of mitochondrial and metabolic pathways also distinguished high and low vulnerability brain states, especially in inhibitory neurons. Importantly, genes that were differentially regulated with vulnerability network activity significantly overlapped (above chance) with those identified by genome-wide association studies as having single nucleotide polymorphisms significantly associated with depression as well as genes more highly expressed in postmortem prefrontal cortex of patients with major depressive disorder. CONCLUSIONS: This is the first study to identify cell types and genes involved in a latent stress vulnerability state in the brain.

2.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979139

RESUMO

In rodents, anxiety is charactered by heightened vigilance during low-threat and uncertain situations. Though activity in the frontal cortex and limbic system are fundamental to supporting this internal state, the underlying network architecture that integrates activity across brain regions to encode anxiety across animals and paradigms remains unclear. Here, we utilize parallel electrical recordings in freely behaving mice, translational paradigms known to induce anxiety, and machine learning to discover a multi-region network that encodes the anxious brain-state. The network is composed of circuits widely implicated in anxiety behavior, it generalizes across many behavioral contexts that induce anxiety, and it fails to encode multiple behavioral contexts that do not. Strikingly, the activity of this network is also principally altered in two mouse models of depression. Thus, we establish a network-level process whereby the brain encodes anxiety in health and disease.

3.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662266

RESUMO

Increased vulnerability to stress is a major risk factor for the manifestation of several mood disorders, including major depressive disorder (MDD). Despite the status of MDD as a significant donor to global disability, the complex integration of genetic and environmental factors that contribute to the behavioral display of such disorders has made a thorough understanding of related etiology elusive. Recent developments suggest that a brain-wide network approach is needed, taking into account the complex interplay of cell types spanning multiple brain regions. Single cell RNA-sequencing technologies can provide transcriptomic profiling at the single-cell level across heterogenous samples. Furthermore, we have previously used local field potential oscillations and machine learning to identify an electrical brain network that is indicative of a predisposed vulnerability state. Thus, this study combined single cell RNA-sequencing (scRNA-Seq) with electrical brain network measures of the stress-vulnerable state, providing a unique opportunity to access the relationship between stress network activity and transcriptomic changes within individual cell types. We found especially high numbers of differentially expressed genes between animals with high and low stress vulnerability brain network activity in astrocytes and glutamatergic neurons but we estimated that vulnerability network activity depends most on GABAergic neurons. High vulnerability network activity included upregulation of microglia and mitochondrial and metabolic pathways, while lower vulnerability involved synaptic regulation. Genes that were differentially regulated with vulnerability network activity significantly overlapped with genes identified as having significant SNPs by human GWAS for depression. Taken together, these data provide the gene expression architecture of a previously uncharacterized stress vulnerability brain state, enabling new understanding and intervention of predisposition to stress susceptibility.

4.
Tissue Eng Part B Rev ; 28(4): 813-829, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34409870

RESUMO

Regenerative engineering strategies for the oral mucoperiosteum, as may be needed following surgeries, such as cleft palate repair and tumor resection, are underdeveloped compared with those for maxillofacial bone. However, critical-size tissue defects left to heal by secondary intention can lead to complications, such as infection, fistula formation, scarring, and midface hypoplasia. This review describes current clinical practice for replacing mucoperiosteal tissue, including autografts and allografts. Potentially paradigm-shifting experimental regenerative engineering strategies for mucoperiosteal wound healing, such as hybrid grafts and engineered matrices, are also discussed. Throughout the review, the advantages and disadvantages of each replacement or regeneration strategy are outlined in the context of clinical outcomes, quality of life for the patient, availability of materials, and cost of care. Finally, future directions for research and development in the area of mucoperiosteum repair are proposed, with an emphasis on identifying globally available and affordable solutions for promoting mucoperiosteal regeneration. Impact statement Unassisted oral mucoperiosteal wound healing can lead to severe complications such as infection, fistulae, scarring, and developmental abnormalities. Thus, strategies for promoting wound healing must be considered when mucoperiosteal defects are incident to oral surgery, as in palatoplasty or tumor resection. Emerging mucoperiosteal tissue engineering strategies, described in this study, have the potential to overcome the limitations of current standard-of-care donor tissue grafts. For example, the use of engineered mucoperiosteal biomaterials could circumvent concerns about tissue availability and immunogenicity. Moreover, employment of tissue engineering strategies may improve the equity of oral wound care by increasing global affordability and accessibility of materials.


Assuntos
Fissura Palatina , Neoplasias , Cicatriz , Fissura Palatina/cirurgia , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA