Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(21): 210201, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856241

RESUMO

Quanta splitting is an essential generator of Gaussian entanglement, exemplified by Einstein-Podolsky-Rosen states and apparently the most commonly occurring form of entanglement. In general, it results from the strong pumping of a nonlinear process with a highly coherent and low-noise external drive. In contrast, recent experiments involving efficient trilinear processes in trapped ions and superconducting circuits have opened the complementary possibility to test the splitting of a few thermal quanta. Stimulated by such small thermal energy, a strong degenerate trilinear coupling generates large amounts of nonclassicality, detectable by more than 3 dB of distillable quadrature squeezing. Substantial entanglement can be generated via frequent passive linear coupling to a third mode present in parallel with the trilinear coupling. This new form of entanglement, outside any Gaussian approximation, surprisingly grows with the mean number of split thermal quanta; a quality absent from Gaussian entanglement. Using distillable squeezing we shed light on this new entanglement mechanism for nonlinear bosonic systems.

2.
Phys Rev Lett ; 132(8): 083601, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457704

RESUMO

Quantum non-Gaussianity, a more potent and highly useful form of nonclassicality, excludes all convex mixtures of Gaussian states and Gaussian parametric processes generating them. Here, for the first time, we conclusively test quantum non-Gaussian coincidences of entangled photon pairs with the Clauser-Horne-Shimony-Holt-Bell factor S=2.328±0.004 from a single quantum dot with a depth up to 0.94±0.02 dB. Such deterministically generated photon pairs fundamentally overcome parametric processes by reducing crucial multiphoton errors. For the quantum non-Gaussian depth of the unheralded (heralded) single-photon state, we achieve the value of 8.08±0.05 dB (19.06±0.29 dB). Our Letter experimentally certifies the exclusive quantum non-Gaussianity properties highly relevant for optical sensing, communication, and computation.

3.
Opt Express ; 31(8): 12865-12879, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157437

RESUMO

In the field of continuous-variable quantum information processing, non-Gaussian states with negative values of the Wigner function are crucial for the development of a fault-tolerant universal quantum computer. While several non-Gaussian states have been generated experimentally, none have been created using ultrashort optical wave packets, which are necessary for high-speed quantum computation, in the telecommunication wavelength band where mature optical communication technology is available. In this paper, we present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons. We used a low-loss, quasi-single spatial mode waveguide optical parametric amplifier, a superconducting transition edge sensor, and a phase-locked pulsed homodyne measurement system to observe negative values of the Wigner function without loss correction up to three-photon subtraction. These results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.

4.
Phys Rev Lett ; 131(16): 160201, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925708

RESUMO

The nonclassicality of quantum states is a fundamental resource for quantum technologies and quantum information tasks, in general. In particular, a pivotal aspect of quantum states lies in their coherence properties, encoded in the nondiagonal terms of their density matrix in the Fock-state bosonic basis. We present operational criteria to detect the nonclassicality of individual quantum coherences that use only data obtainable in experimentally realistic scenarios. We analyze and compare the robustness of the nonclassical coherence aspects when the states pass through lossy and noisy channels. The criteria can be immediately applied to experiments with light, atoms, solid-state system, and mechanical oscillators, thus providing a toolbox allowing practical experiments to more easily detect the nonclassicality of generated states.

5.
Opt Express ; 30(17): 31456-31471, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242226

RESUMO

Squeezed states of the harmonic oscillator are a common resource in applications of quantum technology. If the noise is suppressed in a nonlinear combination of quadrature operators below threshold for all possible up-to-quadratic Hamiltonians, the quantum states are non-Gaussian and we refer to the noise reduction as nonlinear squeezing. Non-Gaussian aspects of quantum states are often more vulnerable to decoherence due to imperfections appearing in realistic experimental implementations. Therefore, a stability of nonlinear squeezing is essential. We analyze the behavior of quantum states with cubic nonlinear squeezing under loss and dephasing. The properties of nonlinear squeezed states depend on their initial parameters which can be optimized and adjusted to achieve the maximal robustness for the potential applications.

6.
Opt Express ; 30(6): 8814-8828, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299326

RESUMO

Laser cooled ions trapped in a linear Paul trap are long-standing ideal candidates for realizing quantum simulation, especially of many-body systems. The properties that contribute to this also provide the opportunity to demonstrate unexpected quantum phenomena in few-body systems. A pair of ions interacting in such traps exchange vibrational quanta through the Coulomb interaction. This linear interaction can be anharmonically modulated by an elementary coupling to the internal two-level structure of one of the ions. Driven by thermal energy in the passively coupled oscillators, which are themselves coupled to the internal ground states of the ions, the nonlinear interaction autonomously and unconditionally generates entanglement between the mechanical modes of the ions. We examine this counter-intuitive thermally induced entanglement for several experimentally feasible model systems and propose parameter regimes where state-of-the-art trapped ion systems can produce such phenomena. In addition, we demonstrate a multiqubit enhancement of such thermally induced entanglements.

7.
Phys Rev Lett ; 128(11): 110503, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363012

RESUMO

We present a protocol for transferring arbitrary continuous-variable quantum states into a few discrete-variable qubits and back. The protocol is deterministic and utilizes only two-mode Rabi-type interactions that are readily available in trapped-ion and superconducting circuit platforms. The inevitable errors caused by transferring an infinite-dimensional state into a finite-dimensional register are suppressed exponentially with the number of qubits. Furthermore, the encoded states exhibit robustness against noise, such as dephasing and amplitude damping, acting on the qubits. Our protocol thus provides a powerful and flexible tool for discrete-continuous hybrid quantum systems.

8.
Opt Express ; 29(15): 24083-24101, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614660

RESUMO

Two-mode squeezed states are scalable and robust entanglement resources for continuous-variable and hybrid quantum information protocols that are realized at a distance. We consider the effect of a linear cross talk in the multimode distribution of two-mode squeezed states propagating through parallel similar channels. First, to reduce degradation of the distributed Gaussian entanglement, we show that the initial two-mode squeezing entering the channel should be optimized already in the presence of a small cross talk. Second, we suggest simultaneous optimization of relative phase between the modes and their linear coupling on a receiver side prior to the use of entanglement, which can fully compensate the cross talk once the channel transmittance is the same for all the modes. For the realistic channels with similar transmittance values for either of the modes, the cross talk can be still largely compensated. This method relying on the mode interference overcomes an alternative method of entanglement localization in one pair of modes using measurement on another pair and feed-forward control. Our theoretical results pave the way to more efficient use of multimode continuous-variable photonic entanglement in scalable quantum networks with cross talk.

9.
Phys Rev Lett ; 126(21): 213604, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114867

RESUMO

Photon coincidences represent an important resource for quantum technologies. They expose nonlinear quantum processes in matter and are essential for sources of entanglement. We derive broadly applicable criteria for quantum non-Gaussian two-photon coincidences that certify a new quality of photon sources. The criteria reject states emerging from Gaussian parametric processes, which often limit applications in quantum technologies. We also analyze the robustness of the quantum non-Gaussian coincidences and compare it to the heralded quantum non-Gaussianity of single photons based on them.

10.
Phys Rev Lett ; 127(12): 129901, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597117

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.121.070401.

11.
Phys Rev Lett ; 126(15): 153602, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929221

RESUMO

Squeezed states of harmonic oscillators are a central resource for continuous-variable quantum sensing, computation, and communication. Here, we propose a method for the generation of very good approximations to highly squeezed vacuum states with low excess antisqueezing using only a few oscillator-qubit coupling gates through a Rabi-type interaction Hamiltonian. This interaction can be implemented with several different methods, which has previously been demonstrated in superconducting circuit and trapped-ion platforms. The protocol is compatible with other protocols manipulating quantum harmonic oscillators, thus facilitating scalable continuous-variable fault-tolerant quantum computation.

12.
Opt Express ; 28(10): 14839-14849, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403518

RESUMO

Photon number resolving detectors are the ultimate measurement of quantum optics, which is the reason why developing the technology is getting significant attention in recent years. With this arises the question of how to evaluate the performance of the detectors. We suggest that performance of a photon number detector can be evaluated by comparing it to a multiplex of on-off detectors in a practical scenario: conditional preparation of a photon number state. Here, both the quality of the prepared state and the probability of the preparation are limited by the number of on-off detectors in the multiplex, which allows us to set benchmarks that can be achieved or surpassed by the photon number resolving detectors.

13.
Opt Express ; 27(25): 36154-36163, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873400

RESUMO

We address feasibility of continuous-variable quantum key distribution using bright multimode coherent states of light and homodyne detection. We experimentally verify the possibility to properly select signal modes by matching them with the local oscillator and this way to decrease the quadrature noise concerned with unmatched bright modes. We apply the results to theoretically predict the performance of continuous-variable quantum key distribution scheme using multimode coherent states in scenarios where modulation is applied either to all the modes or only to the matched ones, and confirm that the protocol is feasible at high overall brightness. Our results open the pathway towards full-scale implementation of quantum key distribution using bright light, thus bringing quantum communication closer to classical optics.

14.
Phys Rev Lett ; 123(4): 043601, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491243

RESUMO

Light is an essential tool for connections between quantum devices and for diagnostic processes in quantum technology. Both applications deal with advanced nonclassical states beyond Gaussian coherent and squeezed states. Current development requires a loss-tolerant diagnostic of such nonclassical aspects. We propose and experimentally verify a faithful hierarchy of genuine n-photon quantum non-Gaussian light. We conclusively witnessed three-photon quantum non-Gaussian light in the experiment. Measured data demonstrate a direct applicability of the hierarchy for a large class of real states.

15.
Phys Rev Lett ; 123(12): 123606, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633963

RESUMO

Extreme events appear in many physics phenomena, whenever the probability distribution has a "heavy tail" differing very much from the equilibrium one. Most unusual are the cases of power-law (Pareto) probability distributions. Among their many manifestations in physics, from "rogue waves" in the ocean to Lévy flights in random walks, Pareto dependences can follow very different power laws. For some outstanding cases, the power exponents are less than 2, leading to indefinite values not only for higher moments but also for the mean. Here we present the first evidence of indefinite-mean Pareto distribution of photon numbers at the output of nonlinear effects pumped by parametrically amplified vacuum noise, known as bright squeezed vacuum (BSV). We observe a Pareto distribution with power exponent 1.31 when BSV is used as a pump for supercontinuum generation, and other heavy-tailed distributions (however, with definite moments) when it pumps optical harmonics generation. Unlike in other fields, we can flexibly control the Pareto exponent by changing the experimental parameters. This extremely fluctuating light is interesting for ghost imaging and for quantum thermodynamics as a resource to produce more efficiently nonequilibrium states by single-photon subtraction, the latter of which we demonstrate experimentally.

16.
Opt Express ; 26(23): 29837-29847, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469942

RESUMO

Manipulating light by adding and subtracting individual photons is a powerful approach with a principal drawback: the operations are fundamentally probabilistic and the probability is often small. This limits not only the fundamental scalability but also the number of operations that can be applied in realistic experimental settings. We propose and analyze a loop-based technique which can significantly increase the probability of success while preserving the quality of the photon subtraction. We show the improvement both in single mode preparation and manipulation of non-Gaussian states with negative Wigner functions and in two-mode entanglement distillation protocol with Gaussian states of light.

17.
Opt Express ; 26(24): 31106-31115, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650701

RESUMO

Transmittance fluctuations in turbulent atmospheric channels result in quadrature excess noise which limits applicability of continuous-variable quantum communication. Such fluctuations are commonly caused by beam wandering around the receiving aperture. We study the possibility to stabilize the fluctuations by expanding the beam, and test this channel stabilization in regard of continuous-variable entanglement sharing and quantum key distribution. We perform transmittance measurements of a real free-space atmospheric channel for different beam widths and show that the beam expansion reduces the fluctuations of the channel transmittance by the cost of an increased overall loss. We also theoretically study the possibility to share an entangled state or to establish secure quantum key distribution over the turbulent atmospheric channels with varying beam widths. We show the positive effect of channel stabilization by beam expansion on continuous-variable quantum communication as well as the necessity to optimize the method in order to maximize the secret key rate or the amount of shared entanglement. Being autonomous and not requiring adaptive control of the source and detectors based on characterization of beam wandering, the method of beam expansion can be also combined with other methods aiming at stabilizing the fluctuating free-space atmospheric channels.

18.
Phys Rev Lett ; 121(7): 070401, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169063

RESUMO

We identify sufficient conditions on the structure of the interaction Hamiltonian between a two-level quantum system and a thermal bath that, without any external drive or coherent measurement, guarantee the generation of steady-state coherences (SSC). The SSC obtained this way, remarkably, turn out to be independent of the initial state of the system, which could therefore be taken as initially incoherent. We characterize in detail this phenomenon, first analytically in the weak coupling regime for two paradigmatic models, and then numerically in more complex systems without any assumption on the coupling strength. In all of these cases, we find that SSC become increasingly significant as the bath is cooled down. These results can be directly verified in many experimental platforms.

19.
Phys Rev Lett ; 121(23): 230601, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576167

RESUMO

Stochastic motion of particles in a highly unstable potential generates a number of diverging trajectories leading to undefined statistical moments of the particle position. This makes experiments challenging and breaks down a standard statistical analysis of unstable mechanical processes and their applications. A newly proposed approach takes advantage of the local characteristics of the most probable particle motion instead of the divergent averages. We experimentally verify its theoretical predictions for a Brownian particle moving near an inflection in a highly unstable cubic optical potential. The most likely position of the particle atypically shifts against the force, despite the trajectories diverging in the opposite direction. The local uncertainty around the most likely position saturates even for strong diffusion and enables well-resolved position detection. Remarkably, the measured particle distribution quickly converges to a quasistationary one with the same atypical shift for different initial particle positions. The demonstrated experimental confirmation of the theoretical predictions approves the utility of local characteristics for highly unstable systems which can be exploited in thermodynamic processes to uncover energetics of unstable systems.

20.
Opt Express ; 25(13): 15456-15467, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788970

RESUMO

We investigated the estimation of an unknown Gaussian process (containing displacement, squeezing and phase-shift) applied to a matter system. The state of the matter system is not directly measured; instead, we measure an optical mode which interacts with the system. We propose an interferometric setup exploiting a beam-splitter-type of light-matter interaction with homodyne detectors and two methods of estimation. We demonstrate the superiority of the interferometric setup over alternative non-interferometric schemes. Importantly, we show that even limited coupling strength and a noisy matter system are sufficient for very good estimation. Our work opens the way to many future investigations of light-matter interferometry for experimental platforms in quantum metrology of matter systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA