Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Ophthalmol ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524446

RESUMO

BACKGROUND/AIMS: To assess pupillary light responses (PLRs) in eyes with high myopia (HM) and evaluate the ability of handheld chromatic pupillometry (HCP) to identify glaucomatous functional loss in eyes with HM. METHODS: This prospective, cross-sectional study included 28 emmetropes (EM), 24 high myopes without glaucoma (HM) and 17 high myopes with confirmed glaucoma (HMG), recruited at the Singapore National Eye Center. Monocular PLRs were evaluated using a custom-built handheld pupillometer that recorded changes in horizontal pupil radius in response to 9 s of exponentially increasing blue (469.1 nm) and red (640.1 nm) lights. Fifteen pupillometric features were compared between groups. A logistic regression model (LRM) was used to distinguish HMG eyes from non-glaucomatous eyes (EM and HM). RESULTS: All pupillometric features were similar between EM and HM groups. Phasic constriction to blue (p<0.001) and red (p=0.006) lights, and maximum constriction to blue light (p<0.001) were reduced in HMG compared with EM and HM. Pupillometric features of melanopsin function (postillumination pupillary response, PIPR area under the curve (AUC) 0-12 s (p<0.001) and PIPR 6 s (p=0.01) to blue light) were reduced in HMG. Using only three pupillometric features, the LRM could classify glaucomatous from non-glaucomatous eyes with an AUC of 0.89 (95% CI 0.77 to 1.00), sensitivity 94.1% (95% CI 82.4% to 100.0%) and specificity 78.8% (95% CI 67.3% to 90.4%). CONCLUSION: PLRs to ramping-up light stimuli are unaltered in highly myopic eyes without other diagnosed ocular conditions. Conversely, HCP can distinguish glaucomatous functional loss in eyes with HM and can be a useful tool to detect/confirm the presence of glaucoma in patients with HM.

2.
Asia Pac J Ophthalmol (Phila) ; 11(2): 111-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533331

RESUMO

ABSTRACT: Recent advances in artificial intelligence have provided ophthalmologists with fast, accurate, and automated means for diagnosing and treating ocular conditions, paving the way to a modern and scalable eye care system. Compared to other ophthalmic disciplines, neuro-ophthalmology has, until recently, not benefitted from significant advances in the area of artificial intelligence. In this narrative review, we summarize and discuss recent advancements utilizing artificial intelligence for the detection of structural and functional optic nerve head abnormalities, and ocular movement disorders in neuro-ophthalmology.


Assuntos
Oftalmologistas , Oftalmologia , Inteligência Artificial , Olho , Humanos , Nervo Óptico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA