Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
2.
PLoS Pathog ; 20(7): e1012381, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39083533

RESUMO

Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.


Assuntos
Himenolepíase , Hymenolepis diminuta , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Hymenolepis diminuta/imunologia , Camundongos , Himenolepíase/imunologia , Himenolepíase/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Camundongos Knockout , Feminino , Hiperplasia/imunologia , Hiperplasia/parasitologia , Células em Tufo
3.
Infect Immun ; 92(3): e0039523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294241

RESUMO

HpARI is an immunomodulatory protein secreted by the intestinal nematode Heligmosomoides polygyrus bakeri, which binds and blocks IL-33. Here, we find that the H. polygyrus bakeri genome contains three HpARI family members and that these have different effects on IL-33-dependent responses in vitro and in vivo, with HpARI1+2 suppressing and HpARI3 amplifying these responses. All HpARIs have sub-nanomolar affinity for mouse IL-33; however, HpARI3 does not block IL-33-ST2 interactions. Instead, HpARI3 stabilizes IL-33, increasing the half-life of the cytokine and amplifying responses to it in vivo. Together, these data show that H. polygyrus bakeri secretes a family of HpARI proteins with both overlapping and distinct functions, comprising a complex immunomodulatory arsenal of host-targeted proteins.


Assuntos
Nematospiroides dubius , Infecções por Strongylida , Camundongos , Animais , Interleucina-33/genética , Citocinas , Imunomodulação , Imunidade
4.
Eur J Immunol ; 50(8): 1167-1173, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32311083

RESUMO

Disrupting or harnessing immune suppression is leading to new therapeutic avenues in a number of immune-related diseases. Understanding the suppressive functions of regulatory T cells (Tregs) in different environments is therefore key. Parasitic worms are strong inducers of Tregs and previous research has suggested that parasite-induced Tregs are stronger suppressors than naïve Tregs. In strains susceptible to the intestinal worm Heligmosomoides polygyrus, like C57BL/6 mice, it has been hypothesized that increased Treg suppression downregulates both Th1 and Th2 responses, leading to chronic infections and high worm burden. Here, we show that the suppressive capacity of Tregs is no different between cells from infected and/or naive animals. In vitro suppression induced by CD4+ CD25+ Tregs (Peyers' Patches or the mesenteric lymph nodes), isolated early (day 7, tissue dwelling phase) or late (day 21, luminal phase) during infection was similar to that induced by cells from naïve animals. Suppression was CTLA-4 dependent in Tregs from acute but not chronic infection or in Tregs from naïve animals. This highlights the versatility of Tregs and the importance of extensive Treg characterization prior to potential in vivo manipulation of this cell type.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Tolerância Imunológica , Nematospiroides dubius , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígeno CTLA-4/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
5.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285249

RESUMO

Granuloma formation is a key host immune response generated to confine invading pathogens and limit extensive host damage. It consists of an accumulation of host immune cells around a pathogen. This host response has been extensively studied in the context of inflammatory diseases. However, there is much less known about Th2-type granulomas generated in response to parasitic worms. Based on in vitro data, innate immune cells within the granuloma are thought to immobilize and kill parasites but also act to repair damaged tissue. Understanding this dual function is key. The two billion people and many livestock/wild animals infected with helminths demonstrate that granulomas are not effective at clearing infection. However, the lack of high mortality highlights their importance in ensuring that parasite migration/tissue damage is restricted and wound healing is effective. In this review, we define two key cellular players (macrophages and eosinophils) and their associated molecular players involved in Th2 granuloma function. To date, the underlying mechanisms remain poorly understood, which is in part due to a lack of conclusive studies. Most have been performed in vitro rather than in vivo, using cells that have not been obtained from granulomas. Experiments using genetically modified mouse strains and/or antibody/chemical-mediated cell depletion have also generated conflicting results depending on the model. We discuss the caveats of previous studies and the new tools available that will help fill the gaps in our knowledge and allow a better understanding of the balance between immune killing and healing.


Assuntos
Eosinófilos/imunologia , Granuloma/imunologia , Helmintíase/imunologia , Helmintos/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Células Th2/imunologia , Animais , Comunicação Celular , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Eosinófilos/parasitologia , Eosinófilos/patologia , Granuloma/parasitologia , Granuloma/patologia , Helmintíase/parasitologia , Helmintíase/patologia , Helmintos/crescimento & desenvolvimento , Helmintos/patogenicidade , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata , Mucosa Intestinal/patologia , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Células Th2/parasitologia , Células Th2/patologia , Cicatrização/imunologia
6.
Cytokine ; 108: 179-181, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684754

RESUMO

IL-21 is a much studied cytokine that has been implicated in the regulation of TH1, TH2, TH17 and regulatory immune responses; its signalling is a promising therapeutic target for autoimmune, inflammatory and infectious diseases. Despite its biological importance, measuring IL-21 reliably has proved difficult. ELISAs are commonly used to measure cytokines in various biological samples. However, results obtained are only as good as the quality of the sample. Here, we show that when using fresh samples, a significant increase in IL-21 was measured in the intestinal homogenate of mice infected with the intestinal worm Heligmosomoides polygyrus. This difference disappeared when samples were frozen in either liquid nitrogen for two days or at -80 °C for three weeks, with levels in both naïve and infected animals decreasing. This was not observed for the IL-13 cytokine, where freezing had no impact on levels measured. Our study highlights the importance of sample storage to measuring biomarkers. Since modulating IL-21 signalling is such an important potential therapeutic avenue, accurately measuring the levels of this cytokine is key to assessing its role in various research models and clinical settings.


Assuntos
Congelamento , Helmintíase/imunologia , Interleucinas/análise , Enteropatias Parasitárias/imunologia , Manejo de Espécimes/métodos , Extratos de Tecidos/análise , Animais , Biomarcadores/análise , Feminino , Intestinos/imunologia , Intestinos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Nematospiroides dubius
7.
PLoS Pathog ; 11(4): e1004646, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25856431

RESUMO

The impact of the microbiota on the immune status of its host is a source of intense research and publicity. In comparison, the effect of arthropod microbiota on vector-borne infectious diseases has received little attention. A better understanding of the vector microbiota in relation to mammalian host immune responses is vital, as it can lead to strategies that affect transmission and improve vaccine design in a field of research where few vaccines exist and effective treatment is rare. Recent demonstrations of how microbiota decrease pathogen development in arthropods, and thus alter vector permissiveness to vector-borne diseases (VBDs), have led to renewed interest. However, hypotheses on the interactions between the arthropod-derived microbiota and the mammalian hosts have yet to be addressed. Advances in DNA sequencing technology, increased yield and falling costs, mean that these studies are now feasible for many microbiologists and entomologists. Here, we distill current knowledge and put forward key questions and experimental designs to shed light on this burgeoning research topic.


Assuntos
Vetores Artrópodes/microbiologia , Artrópodes/microbiologia , Transmissão de Doença Infecciosa , Microbiota , Animais , Humanos
8.
Infect Immun ; 84(7): 2002-2011, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27091932

RESUMO

CD47 engagement by the macrophage signal regulatory protein alpha (SIRPα) inhibits phagocytic activity and protects red blood cells (RBCs) from erythrophagocytosis. The role of CD47-SIRPα in the innate immune response to Plasmodium falciparum infection is unknown. We hypothesized that disruption of SIRPα signaling may enhance macrophage uptake of malaria parasite-infected RBCs. To test this hypothesis, we examined in vivo clearance in CD47-deficient mice infected with Plasmodium berghei ANKA and in vitro phagocytosis of P. falciparum-infected RBCs by macrophages from SHP-1-deficient (Shp-1(-/-)) mice and NOD.NOR-Idd13.Prkdc(scid) (NS-Idd13) mice, as well as human macrophages, following disruption of CD47-SIRPα interactions with anti-SIRPα antibodies or recombinant SIRPα-Fc fusion protein. Compared to their wild-type counterparts, Cd47(-/-) mice displayed significantly lower parasitemia, decreased endothelial activation, and enhanced survival. Using macrophages from SHP-1-deficient mice or from NS-Idd13 mice, which express a SIRPα variant that does not bind human CD47, we showed that altered SIRPα signaling resulted in enhanced phagocytosis of P. falciparum-infected RBCs. Moreover, disrupting CD47-SIRPα engagement using anti-SIRPα antibodies or SIRPα-Fc fusion protein also increased phagocytosis of P. falciparum-infected RBCs. These results indicate an important role for CD47-SIRPα interactions in innate control of malaria and suggest novel targets for intervention.


Assuntos
Antígeno CD47/metabolismo , Macrófagos/fisiologia , Macrófagos/parasitologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Receptores Imunológicos/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Imunidade Inata , Camundongos , Camundongos Knockout , Fagocitose/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica , Transdução de Sinais
9.
PLoS One ; 19(7): e0292408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950025

RESUMO

Co-infections are a common reality but understanding how the immune system responds in this context is complex and can be unpredictable. Heligmosomoides bakeri (parasitic roundworm, previously Heligmosomoides polygyrus) and Toxoplasma gondii (protozoan parasite) are well studied organisms that stimulate a characteristic Th2 and Th1 response, respectively. Several studies have demonstrated reduced inflammatory cytokine responses in animals co-infected with such organisms. However, while general cytokine signatures have been examined, the impact of the different cytokine producing lymphocytes on parasite control/clearance is not fully understood. We investigated five different lymphocyte populations (NK, NKT, γδ T, CD4+ T and CD8+ T cells), five organs (small intestine, Peyer's patches, mesenteric lymph nodes, spleen and liver), and 4 cytokines (IFN©, IL-4, IL-10 and IL-13) at two different time points (days 5 and 10 post T. gondii infection). We found that co-infected animals had significantly higher mortality than either single infection. This was accompanied by transient and local changes in parasite loads and cytokine profiles. Despite the early changes in lymphocyte and cytokine profiles, severe intestinal pathology in co-infected mice likely contributed to early mortality due to significant damage by both parasites in the small intestine. Our work demonstrates the importance of taking a broad view during infection research, studying multiple cell types, organs/tissues and time points to link and/or uncouple immunological from pathological findings. Our results provide insights into how co-infection with parasites stimulating different arms of the immune system can lead to drastic changes in infection dynamics.


Assuntos
Coinfecção , Citocinas , Nematospiroides dubius , Toxoplasma , Animais , Coinfecção/imunologia , Coinfecção/parasitologia , Toxoplasma/imunologia , Camundongos , Citocinas/metabolismo , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/mortalidade , Toxoplasmose/imunologia , Toxoplasmose/mortalidade , Toxoplasmose/complicações , Feminino , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/mortalidade , Toxoplasmose Animal/parasitologia , Baço/imunologia , Baço/patologia , Baço/parasitologia , Carga Parasitária , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Tecido Linfoide/parasitologia
11.
Trends Parasitol ; 39(9): 711-715, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37455169

RESUMO

Student-faculty partnerships can drive innovation in parasitology education and outreach. We provide recommendations for building successful partnerships during the design, implementation, and impact assessment stages. We also introduce a new series of freely available educational and community outreach materials available on a platform that the parasitology community can contribute to.


Assuntos
Parasitologia , Estudantes , Humanos , Parasitologia/educação
12.
Parasit Vectors ; 16(1): 171, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37246221

RESUMO

BACKGROUND: Heligmosomoides bakeri (often mistaken for Heligmosomoides polygyrus) is a promising model for parasitic nematodes with the key advantage of being amenable to study and manipulation within a controlled laboratory environment. While draft genome sequences are available for this worm, which allow for comparative genomic analyses between nematodes, there is a notable lack of information on its gene expression. METHODS: We generated biologically replicated RNA-seq datasets from samples taken throughout the parasitic life of H. bakeri. RNA from tissue-dwelling and lumen-dwelling worms, collected under a dissection microscope, was sequenced on an Illumina platform. RESULTS: We find extensive transcriptional sexual dimorphism throughout the fourth larval and adult stages of this parasite and identify alternative splicing, glycosylation, and ubiquitination as particularly important processes for establishing and/or maintaining sex-specific gene expression in this species. We find sex-linked differences in transcription related to aging and oxidative and osmotic stress responses. We observe a starvation-like signature among transcripts whose expression is consistently upregulated in males, which may reflect a higher energy expenditure by male worms. We detect evidence of increased importance for anaerobic respiration among the adult worms, which coincides with the parasite's migration into the physiologically hypoxic environment of the intestinal lumen. Furthermore, we hypothesize that oxygen concentration may be an important driver of the worms encysting in the intestinal mucosa as larvae, which not only fully exposes the worms to their host's immune system but also shapes many of the interactions between the host and parasite. We find stage- and sex-specific variation in the expression of immunomodulatory genes and in anthelmintic targets. CONCLUSIONS: We examine how different the male and female worms are at the molecular level and describe major developmental events that occur in the worm, which extend our understanding of the interactions between this parasite and its host. In addition to generating new hypotheses for follow-up experiments into the worm's behavior, physiology, and metabolism, our datasets enable future more in-depth comparisons between nematodes to better define the utility of H. bakeri as a model for parasitic nematodes in general.


Assuntos
Anti-Helmínticos , Nematoides , Parasitos , Trichostrongyloidea , Animais , Masculino , Feminino , Caracteres Sexuais , Nematoides/genética , Larva/genética
13.
J Immunol ; 185(9): 5495-502, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20876354

RESUMO

Pathogen sensing by the inflammasome activates inflammatory caspases that mediate inflammation and cell death. Caspase-12 antagonizes the inflammasome and NF-κB and is associated with susceptibility to bacterial sepsis. A single-nucleotide polymorphism (T(125)C) in human Casp12 restricts its expression to Africa, Southeast Asia, and South America. Here, we investigated the role of caspase-12 in the control of parasite replication and pathogenesis in malaria and report that caspase-12 dampened parasite clearance in blood-stage malaria and modulated susceptibility to cerebral malaria. This response was independent of the caspase-1 inflammasome, as casp1(-/-) mice were indistinguishable from wild-type animals in response to malaria, but dependent on enhanced NF-κB activation. Mechanistically, caspase-12 competed with NEMO for association with IκB kinase-α/ß, effectively preventing the formation of the IκB kinase complex and inhibiting downstream transcriptional activation by NF-κB. Systemic inhibition of NF-κB or Ab neutralization of IFN-γ reversed the increased resistance of casp12(-/-) mice to blood-stage malaria infection.


Assuntos
Caspase 12/imunologia , Inflamação/imunologia , Malária/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Animais , Caspase 12/genética , Citocinas/biossíntese , Citocinas/imunologia , Ativação Enzimática/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Predisposição Genética para Doença , Humanos , Inflamação/genética , Malária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
14.
Front Immunol ; 13: 1020056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569914

RESUMO

Introduction: Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results: Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion: To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.


Assuntos
Nematospiroides dubius , Humanos , Camundongos , Animais , Cicatriz , Imunidade , Granuloma , Inflamação
15.
J Exp Med ; 202(9): 1199-212, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16275759

RESUMO

Allergic diseases mediated by T helper type (Th) 2 cell immune responses are rising dramatically in most developed countries. Exaggerated Th2 cell reactivity could result, for example, from diminished exposure to Th1 cell-inducing microbial infections. Epidemiological studies, however, indicate that Th2 cell-stimulating helminth parasites may also counteract allergies, possibly by generating regulatory T cells which suppress both Th1 and Th2 arms of immunity. We therefore tested the ability of the Th2 cell-inducing gastrointestinal nematode Heligmosomoides polygyrus to influence experimentally induced airway allergy to ovalbumin and the house dust mite allergen Der p 1. Inflammatory cell infiltrates in the lung were suppressed in infected mice compared with uninfected controls. Suppression was reversed in mice treated with antibodies to CD25. Most notably, suppression was transferable with mesenteric lymph node cells (MLNC) from infected animals to uninfected sensitized mice, demonstrating that the effector phase was targeted. MLNC from infected animals contained elevated numbers of CD4(+)CD25(+)Foxp3(+) T cells, higher TGF-beta expression, and produced strong interleukin (IL)-10 responses to parasite antigen. However, MLNC from IL-10-deficient animals transferred suppression to sensitized hosts, indicating that IL-10 is not the primary modulator of the allergic response. Suppression was associated with CD4(+) T cells from MLNC, with the CD4(+)CD25(+) marker defining the most active population. These data support the contention that helminth infections elicit a regulatory T cell population able to down-regulate allergen induced lung pathology in vivo.


Assuntos
Pulmão/patologia , Nematospiroides dubius/imunologia , Hipersensibilidade Respiratória/imunologia , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Movimento Celular/imunologia , Citocinas/antagonistas & inibidores , Feminino , Inflamação/imunologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Interleucina-2/imunologia , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/prevenção & controle
16.
Mol Med ; 17(7-8): 717-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21556483

RESUMO

Cerebral malaria (CM) is associated with excessive inflammatory responses and endothelial activation. Sphingosine 1-phosphate (S1P) is a signaling sphingolipid implicated in regulating vascular integrity, inflammation and T-cell migration. We hypothesized that altered S1P signaling during malaria contributes to endothelial activation and inflammation, and show that plasma S1P levels were decreased in Ugandan children with CM compared with children with uncomplicated malaria. Using the Plasmodium berghei ANKA (PbA) model of experimental CM (ECM), we demonstrate that humanized S1P lyase (hS1PL)(-/-) mice with reduced S1P lyase activity (resulting in increased bio-available S1P) had improved survival compared with wild-type littermates. Prophylactic and therapeutic treatment of infected mice with compounds that modulate the S1P pathway and are in human trials for other conditions (FTY720 or LX2931) significantly improved survival in ECM. FTY720 treatment improved vascular integrity as indicated by reduced levels of soluble intercellular adhesion molecule (sICAM), increased angiopoietin 1 (Ang1) (regulator of endothelial quiescence) levels, and decreased Evans blue dye leakage into brain parenchyma. Furthermore, treatment with FTY720 decreased IFNγ levels in plasma as well as CD4(+) and CD8(+) T-cell infiltration into the brain. Finally, when administered during infection in combination with artesunate, FTY720 treatment resulted in increased survival to ECM. These findings implicate dysregulation of the S1P pathway in the pathogenesis of human and murine CM and suggest a novel therapeutic strategy to improve clinical outcome in severe malaria.


Assuntos
Aldeído Liases/metabolismo , Lisofosfolipídeos/metabolismo , Malária Cerebral/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Esfingosina/análogos & derivados , Aldeído Liases/antagonistas & inibidores , Aldeído Liases/genética , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artesunato , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Moléculas de Adesão Celular/sangue , Criança , Pré-Escolar , Feminino , Cloridrato de Fingolimode , Humanos , Imidazóis/farmacologia , Imunossupressores/farmacologia , Lactente , Interferon gama/sangue , Lisofosfolipídeos/sangue , Malária Cerebral/tratamento farmacológico , Malária Cerebral/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oximas/farmacologia , Plasmodium berghei/efeitos dos fármacos , Propilenoglicóis/farmacologia , Esfingosina/sangue , Esfingosina/metabolismo , Esfingosina/farmacologia , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Resultado do Tratamento
17.
BMC Infect Dis ; 10: 299, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20950462

RESUMO

BACKGROUND: Members of the CD36 scavenger receptor family have been implicated as sensors of microbial products that mediate phagocytosis and inflammation in response to a broad range of pathogens. We investigated the role of CD36 in host response to mycobacterial infection. METHODS: Experimental Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection in Cd36+/+ and Cd36-/- mice, and in vitro co-cultivation of M. tuberculosis, BCG and M. marinum with Cd36+/+ and Cd36-/-murine macrophages. RESULTS: Using an in vivo model of BCG infection in Cd36+/+ and Cd36-/- mice, we found that mycobacterial burden in liver and spleen is reduced (83% lower peak splenic colony forming units, p < 0.001), as well as the density of granulomas, and circulating tumor necrosis factor (TNF) levels in Cd36-/- animals. Intracellular growth of all three mycobacterial species was reduced in Cd36-/- relative to wild type Cd36+/+ macrophages in vitro. This difference was not attributable to alterations in mycobacterial uptake, macrophage viability, rate of macrophage apoptosis, production of reactive oxygen and/or nitrogen species, TNF or interleukin-10. Using an in vitro model designed to recapitulate cellular events implicated in mycobacterial infection and dissemination in vivo (i.e., phagocytosis of apoptotic macrophages containing mycobacteria), we demonstrated reduced recovery of viable mycobacteria within Cd36-/- macrophages. CONCLUSIONS: Together, these data indicate that CD36 deficiency confers resistance to mycobacterial infection. This observation is best explained by reduced intracellular survival of mycobacteria in the Cd36-/- macrophage and a role for CD36 in the cellular events involved in granuloma formation that promote early bacterial expansion and dissemination.


Assuntos
Antígenos CD36/deficiência , Interações Hospedeiro-Patógeno , Infecções por Mycobacterium/patologia , Mycobacterium bovis/patogenicidade , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Animais , Carga Bacteriana , Antígenos CD36/imunologia , Células Cultivadas , Modelos Animais de Doenças , Fígado/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/imunologia , Mycobacterium marinum/imunologia , Mycobacterium tuberculosis/imunologia , Baço/microbiologia , Virulência
18.
J Leukoc Biol ; 108(1): 83-91, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170880

RESUMO

Eosinophils are traditionally associated with allergic and parasitic inflammation. More recently, eosinophils have also been shown to have roles in diverse processes including development, intestinal health, thymic selection, and B-cell survival with the majority of these insights being derived from murine models and in vitro assays. Despite this, tools to measure the dynamic activity of eosinophils in situ have been lacking. Intravital microscopy is a powerful tool that enables direct visualization of leukocytes and their dynamic behavior in real-time in a wide range of processes in both health and disease. Until recently eosinophil researchers have not been able to take full advantage of this technology due to a lack of tools such as genetically encoded reporter mice. This mini-review examines the history of intravital microscopy with a focus on eosinophils. The development and use of eosinophil-specific Cre (EoCre) mice to create GFP and tdTomato fluorescent reporter animals is also described. Genetically encoded eosinophil reporter mice combined with intravital microscopy provide a powerful tool to add to the toolbox of technologies that will help us unravel the mysteries still surrounding this cell.


Assuntos
Eosinófilos/citologia , Microscopia Intravital , Animais , Ceco/citologia , Corantes Fluorescentes/metabolismo , Genes Reporter , Intestino Delgado/citologia , Pulmão/citologia , Linfonodos/citologia , Camundongos Endogâmicos C57BL , Músculos/citologia
19.
Mol Biochem Parasitol ; 162(2): 105-11, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18804125

RESUMO

Severe forms of malaria infection claim over 1 million lives annually. One aspect of severe malaria pathogenesis is an excessive or dysregulated inflammatory response to infection. With the characterization of Toll-like receptors (TLRs), which initiate inflammation upon detection of microbial products, involvement of TLRs in the host response to malaria has undergone intense investigation. While TLRs appear to mediate inflammation in malaria infection and may contribute to development of severe malaria, it is unlikely that they operate in isolation from other components of innate immunity. Here, we highlight recent findings implicating other innate immune mechanisms in the host inflammatory response to malaria, propose how they may integrate and synergize with TLR pathways, and discuss opportunities and challenges associated with anti-inflammatory adjunctive therapy for the treatment of severe malaria.


Assuntos
Imunidade Inata/imunologia , Inflamação/imunologia , Malária/imunologia , Receptores Toll-Like/metabolismo , Humanos , Malária/metabolismo , Modelos Biológicos , Receptores Toll-Like/imunologia
20.
Trends Parasitol ; 33(2): 113-127, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988095

RESUMO

Toxoplasma gondii is an intensely studied protozoan parasite. It is also used as a model organism to research additional clinically relevant human and veterinary parasites due to ease of in vitro culture and genetic manipulation. Recently, it has been developed as a model of inflammatory bowel disease, due to their similar pathologies. However, researchers vary widely in how they use T. gondii, which makes study comparisons and interpretation difficult. The aim of this review is to provide researchers with a tool to: (i) determine the appropriateness of the different T. gondii models to their research, (ii) interpret results from the wide range of study conditions, and (iii) consider new advances in technology which could improve or refine their experimental setup.


Assuntos
Modelos Biológicos , Pesquisa/tendências , Toxoplasma/fisiologia , Toxoplasmose/patologia , Animais , Humanos , Tecnologia/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA