Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0168323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226809

RESUMO

Emerging and endemic zoonotic diseases continue to threaten human and animal health, our social fabric, and the global economy. Zoonoses frequently emerge from congregate interfaces where multiple animal species and humans coexist, including farms and markets. Traditional food markets are widespread across the globe and create an interface where domestic and wild animals interact among themselves and with humans, increasing the risk of pathogen spillover. Despite decades of evidence linking markets to disease outbreaks across the world, there remains a striking lack of pathogen surveillance programs that can relay timely, cost-effective, and actionable information to decision-makers to protect human and animal health. However, the strategic incorporation of environmental surveillance systems in markets coupled with novel pathogen detection strategies can create an early warning system capable of alerting us to the risk of outbreaks before they happen. Here, we explore the concept of "smart" markets that utilize continuous surveillance systems to monitor the emergence of zoonotic pathogens with spillover potential.IMPORTANCEFast detection and rapid intervention are crucial to mitigate risks of pathogen emergence, spillover and spread-every second counts. However, comprehensive, active, longitudinal surveillance systems at high-risk interfaces that provide real-time data for action remain lacking. This paper proposes "smart market" systems harnessing cutting-edge tools and a range of sampling techniques, including wastewater and air collection, multiplex assays, and metagenomic sequencing. Coupled with robust response pathways, these systems could better enable Early Warning and bolster prevention efforts.


Assuntos
Doenças Transmissíveis Emergentes , Monitoramento Epidemiológico , Animais , Humanos , Animais Selvagens , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/prevenção & controle , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
2.
Proc Natl Acad Sci U S A ; 119(39): e2112341119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122224

RESUMO

Urbanization is rapidly transforming much of Southeast Asia, altering the structure and function of the landscape, as well as the frequency and intensity of the interactions between people, animals, and the environment. In this study, we explored the impact of urbanization on zoonotic disease risk by simultaneously characterizing changes in the ecology of animal reservoirs (rodents), ectoparasite vectors (ticks), and pathogens across a gradient of urbanization in Kuching, a city in Malaysian Borneo. We sampled 863 rodents across rural, developing, and urban locations and found that rodent species diversity decreased with increasing urbanization-from 10 species in the rural location to 4 in the rural location. Notably, two species appeared to thrive in urban areas, as follows: the invasive urban exploiter Rattus rattus (n = 375) and the native urban adapter Sundamys muelleri (n = 331). R. rattus was strongly associated with built infrastructure across the gradient and carried a high diversity of pathogens, including multihost zoonoses capable of environmental transmission (e.g., Leptospira spp.). In contrast, S. muelleri was restricted to green patches where it was found at high densities and was strongly associated with the presence of ticks, including the medically important genera Amblyomma, Haemaphysalis, and Ixodes. Our analyses reveal that zoonotic disease risk is elevated and heterogeneously distributed in urban environments and highlight the potential for targeted risk reduction through pest management and public health messaging.


Assuntos
Carrapatos , Urbanização , Animais , Sudeste Asiático , Cidades , Humanos , Murinae , Ratos , Zoonoses/epidemiologia
3.
Proc Natl Acad Sci U S A ; 119(45): e2204993119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322765

RESUMO

Community-associated, methicillin-resistant Staphylococcus aureus (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 y. Here, we apply consistent phylodynamic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole-genome sequencing data for the Australian sequence type (ST) ST93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (Re) and sustained transmission (Re > 1) coincided with spread of progenitor methicillin-susceptible S. aureus (MSSA) in remote northern Australian populations, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Applying the same phylodynamic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated S. aureus lineages from America, Asia, Australasia, and Europe. Surges in Re were observed at the divergence of antibiotic-resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed among drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA in the late 20th century was driven by a combination of antibiotic-resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Infecções Estafilocócicas/epidemiologia , Austrália/epidemiologia , Antibacterianos/farmacologia , Paquistão , Infecções Comunitárias Adquiridas/epidemiologia , Testes de Sensibilidade Microbiana
4.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171290

RESUMO

Nanopore sequencing and phylodynamic modeling have been used to reconstruct the transmission dynamics of viral epidemics, but their application to bacterial pathogens has remained challenging. Cost-effective bacterial genome sequencing and variant calling on nanopore platforms would greatly enhance surveillance and outbreak response in communities without access to sequencing infrastructure. Here, we adapt random forest models for single nucleotide polymorphism (SNP) polishing developed by Sanderson and colleagues (2020. High precision Neisseria gonorrhoeae variant and antimicrobial resistance calling from metagenomic nanopore sequencing. Genome Res. 30(9):1354-1363) to estimate divergence and effective reproduction numbers (Re) of two methicillin-resistant Staphylococcus aureus (MRSA) outbreaks from remote communities in Far North Queensland and Papua New Guinea (PNG; n = 159). Successive barcoded panels of S. aureus isolates (2 × 12 per MinION) sequenced at low coverage (>5× to 10×) provided sufficient data to accurately infer genotypes with high recall when compared with Illumina references. Random forest models achieved high resolution on ST93 outbreak sequence types (>90% accuracy and precision) and enabled phylodynamic inference of epidemiological parameters using birth-death skyline models. Our method reproduced phylogenetic topology, origin of the outbreaks, and indications of epidemic growth (Re > 1). Nextflow pipelines implement SNP polisher training, evaluation, and outbreak alignments, enabling reconstruction of within-lineage transmission dynamics for infection control of bacterial disease outbreaks on portable nanopore platforms. Our study shows that nanopore technology can be used for bacterial outbreak reconstruction at competitive costs, providing opportunities for infection control in hospitals and communities without access to sequencing infrastructure, such as in remote northern Australia and PNG.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sequenciamento por Nanoporos , Bactérias/genética , Surtos de Doenças , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Staphylococcus aureus Resistente à Meticilina/genética , Filogenia , Staphylococcus aureus/genética
5.
Arch Virol ; 167(10): 1977-1987, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35781557

RESUMO

As part of a broad One Health surveillance effort to detect novel viruses in wildlife and people, we report several paramyxovirus sequences sampled primarily from bats during 2013 and 2014 in Brazil and Malaysia, including seven from which we recovered full-length genomes. Of these, six represent the first full-length paramyxovirid genomes sequenced from the Americas, including two that are the first full-length bat morbillivirus genome sequences published to date. Our findings add to the vast number of viral sequences in public repositories, which have been increasing considerably in recent years due to the rising accessibility of metagenomics. Taxonomic classification of these sequences in the absence of phenotypic data has been a significant challenge, particularly in the subfamily Orthoparamyxovirinae, where the rate of discovery of novel sequences has been substantial. Using pairwise amino acid sequence classification (PAASC), we propose that five of these sequences belong to members of the genus Jeilongvirus and two belong to members of the genus Morbillivirus. We also highlight inconsistencies in the classification of Tupaia virus and Mòjiang virus using the same demarcation criteria and suggest reclassification of these viruses into new genera. Importantly, this study underscores the critical importance of sequence length in PAASC analysis as well as the importance of biological characteristics such as genome organization in the taxonomic classification of viral sequences.


Assuntos
Quirópteros , Morbillivirus , Vírus , Animais , Brasil , Genoma Viral , Humanos , Malásia , Morbillivirus/genética , Paramyxoviridae/genética , Filogenia
6.
Mar Drugs ; 19(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073964

RESUMO

Stonefish are regarded as one of the most venomous fish in the world. Research on stonefish venom has chiefly focused on the in vitro and in vivo neurological, cardiovascular, cytotoxic and nociceptive effects of the venom. The last literature review on stonefish venom was published over a decade ago, and much has changed in the field since. In this review, we have generated a global map of the current distribution of all stonefish (Synanceia) species, presented a table of clinical case reports and provided up-to-date information about the development of polyspecific stonefish antivenom. We have also presented an overview of recent advancements in the biomolecular composition of stonefish venom, including the analysis of transcriptomic and proteomic data from Synanceia horrida venom gland. Moreover, this review highlights the need for further research on the composition and properties of stonefish venom, which may reveal novel molecules for drug discovery, development or other novel physiological uses.


Assuntos
Mordeduras e Picadas/epidemiologia , Mordeduras e Picadas/terapia , Venenos de Peixe/intoxicação , Peixes Venenosos , Animais , Mordeduras e Picadas/complicações , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/terapia , Venenos de Peixe/análise , Venenos de Peixe/química , Peixes Venenosos/fisiologia , Geografia , Humanos , Oceano Índico/epidemiologia , Doenças Neuromusculares/epidemiologia , Doenças Neuromusculares/etiologia , Doenças Neuromusculares/terapia , Oceano Pacífico/epidemiologia
7.
J Gen Virol ; 100(10): 1350-1362, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513008

RESUMO

Recent advances in high-throughput sequencing technology have led to a rapid expansion in the number of viral sequences associated with samples from vertebrates, invertebrates and environmental samples. Accurate host identification can be difficult in assays of complex samples that contain more than one potential host. Using unbiased metagenomic sequencing, we investigated wild house mice (Mus musculus) and brown rats (Rattus norvegicus) from New York City to determine the aetiology of liver disease. Light microscopy was used to characterize liver disease, and fluorescent microscopy with in situ hybridization was employed to identify viral cell tropism. Sequences representing two novel negative-sense RNA viruses were identified in homogenates of wild house mouse liver tissue: Amsterdam virus and Fulton virus. In situ hybridization localized viral RNA to Capillaria hepatica, a parasitic nematode that had infected the mouse liver. RNA from either virus was found within nematode adults and unembryonated eggs. Expanded PCR screening identified brown rats as a second rodent host for C. hepatica as well as both nematode-associated viruses. Our findings indicate that the current diversity of nematode-associated viruses may be underappreciated and that anatomical imaging offers an alternative to computational host assignment approaches.


Assuntos
Animais Selvagens/parasitologia , Capillaria/virologia , Infecções por Enoplida/veterinária , Vírus de RNA/isolamento & purificação , Doenças dos Roedores/parasitologia , Animais , Capillaria/fisiologia , Infecções por Enoplida/parasitologia , Evolução Molecular , Fígado/parasitologia , Camundongos , Cidade de Nova Iorque , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Ratos
8.
PLoS Pathog ; 11(2): e1004664, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25679389

RESUMO

RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.


Assuntos
Evolução Molecular , Genoma Viral/fisiologia , Fases de Leitura Aberta/fisiologia , RNA Viral/genética , Rhabdoviridae/genética , Sequência de Bases , Dados de Sequência Molecular
9.
Vet Res ; 48(1): 82, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169390

RESUMO

The distribution of bluetongue viruses (BTV) in Australia is represented by two distinct and interconnected epidemiological systems (episystems)-one distributed primarily in the north and one in the east. The northern episystem is characterised by substantially greater antigenic diversity than the eastern episystem; yet the forces that act to limit the diversity present in the east remain unclear. Previous work has indicated that the northern episystem is linked to that of island South East Asia and Melanesia, and that BTV present in Indonesia, Papua New Guinea and East Timor, may act as source populations for new serotypes and genotypes of BTV to enter Australia's north. In this study, the genomes of 49 bluetongue viruses from the eastern episystem and 13 from Indonesia were sequenced and analysed along with 27 previously published genome sequences from the northern Australian episystem. The results of this analysis confirm that the Australian BTV population has its origins in the South East Asian/Melanesian episystem, and that incursions into northern Australia occur with some regularity. In addition, the presence of limited genetic diversity in the eastern episystem relative to that found in the north supports the presence of substantial, but not complete, barriers to gene flow between the northern and eastern Australian episystems. Genetic bottlenecks between each successive episystem are evident, and appear to be responsible for the reduction in BTV genetic diversity observed in the north to south-east direction.


Assuntos
Vírus Bluetongue/genética , Variação Genética , Genoma Viral , Austrália , Genômica , Indonésia , Filogenia , Análise de Sequência de DNA , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
10.
Emerg Infect Dis ; 22(5): 833-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27088588

RESUMO

To better understand the diversity of bunyaviruses and their circulation in Australia, we sequenced 5 viruses (Gan Gan, Trubanaman, Kowanyama, Yacaaba, and Taggert) isolated and serologically identified 4 decades ago as members of the family Bunyaviridae. Gan Gan and Trubanaman viruses almost perfectly matched 2 recently isolated, purportedly novel viruses, Salt Ash and Murrumbidgee viruses, respectively. Kowanyama and Yacaaba viruses were identified as being related to members of a large clade containing pathogenic viruses. Taggert virus was confirmed as being a nairovirus; several viruses of this genus are pathogenic to humans. The genetic relationships and historical experimental infections in mice reveal the potential for these viruses to lead to disease emergence.


Assuntos
Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Bunyaviridae/genética , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Sequência de Aminoácidos , Animais , Austrália/epidemiologia , Bunyaviridae/classificação , Bunyaviridae/isolamento & purificação , Bunyaviridae/ultraestrutura , Infecções por Bunyaviridae/transmissão , Doenças Transmissíveis Emergentes/transmissão , Genoma Viral , Humanos , Filogenia , RNA Viral , Proteínas Virais/química , Proteínas Virais/genética
11.
Annu Rev Genomics Hum Genet ; 14: 281-300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24003855

RESUMO

Globalization and industrialization have dramatically altered the vulnerability of human and animal populations to emerging and reemerging infectious diseases while shifting both the scale and pace of disease outbreaks. Fortunately, the advent of high-throughput DNA sequencing platforms has also increased the speed with which such pathogens can be detected and characterized as part of an outbreak response effort. It is now possible to sequence the genome of a pathogen rapidly, inexpensively, and with high sensitivity, transforming the fields of diagnostics, surveillance, forensic analysis, and pathogenesis. Here, we review advances in methods for microbial discovery and characterization, as well as strategies for testing the clinical and public health significance of microbe-disease associations. Finally, we discuss how genetic data can inform our understanding of the general process of pathogen emergence.


Assuntos
Bactérias/isolamento & purificação , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus/isolamento & purificação , Animais , Bactérias/genética , Genômica/métodos , Humanos , Internacionalidade , Análise de Sequência de DNA/métodos , Vírus/genética
12.
Proc Natl Acad Sci U S A ; 110(20): 8194-9, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23610427

RESUMO

Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/veterinária , Flaviviridae/genética , Hepacivirus/genética , Viroses/virologia , Sequência de Aminoácidos , Animais , Teorema de Bayes , Códon , Reservatórios de Doenças/virologia , Variação Genética , Genoma Viral , Geografia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Viroses/veterinária
13.
Virol J ; 11: 97, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24884700

RESUMO

BACKGROUND: The family Mesoniviridae (order Nidovirales) comprises of a group of positive-sense, single-stranded RNA ([+]ssRNA) viruses isolated from mosquitoes. FINDINGS: Thirteen novel insect-specific virus isolates were obtained from mosquitoes collected in Indonesia, Thailand and the USA. By electron microscopy, the virions appeared as spherical particles with a diameter of ~50 nm. Their 20,129 nt to 20,777 nt genomes consist of positive-sense, single-stranded RNA with a poly-A tail. Four isolates from Houston, Texas, and one isolate from Java, Indonesia, were identified as variants of the species Alphamesonivirus-1 which also includes Nam Dinh virus (NDiV) from Vietnam and Cavally virus (CavV) from Côte d'Ivoire. The eight other isolates were identified as variants of three new mesoniviruses, based on genome organization and pairwise evolutionary distances: Karang Sari virus (KSaV) from Java, Bontag Baru virus (BBaV) from Java and Kalimantan, and Kamphaeng Phet virus (KPhV) from Thailand. In comparison with NDiV, the three new mesoniviruses each contained a long insertion (180 - 588 nt) of unknown function in the 5' region of ORF1a, which accounted for much of the difference in genome size. The insertions contained various short imperfect repeats and may have arisen by recombination or sequence duplication. CONCLUSIONS: In summary, based on their genome organizations and phylogenetic relationships, thirteen new viruses were identified as members of the family Mesoniviridae, order Nidovirales. Species demarcation criteria employed previously for mesoniviruses would place five of these isolates in the same species as NDiV and CavV (Alphamesonivirus-1) and the other eight isolates would represent three new mesonivirus species (Alphamesonivirus-5, Alphamesonivirus-6 and Alphamesonivirus-7). The observed spatiotemporal distribution over widespread geographic regions and broad species host range in mosquitoes suggests that mesoniviruses may be common in mosquito populations worldwide.


Assuntos
Culicidae/virologia , Especificidade de Hospedeiro , Nidovirales/isolamento & purificação , Nidovirales/fisiologia , Filogeografia , Sequência de Aminoácidos , Animais , Ordem dos Genes , Indonésia , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Nidovirales/genética , Nidovirales/ultraestrutura , Conformação de Ácido Nucleico , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Análise Espaço-Temporal , Tailândia , Estados Unidos , Vírion/ultraestrutura
14.
Proc Natl Acad Sci U S A ; 108(28): 11608-13, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21610165

RESUMO

An estimated 3% of the world's population is chronically infected with hepatitis C virus (HCV). Although HCV was discovered more than 20 y ago, its origin remains obscure largely because no closely related animal virus homolog has been identified; furthermore, efforts to understand HCV pathogenesis have been hampered by the absence of animal models other than chimpanzees for human disease. Here we report the identification in domestic dogs of a nonprimate hepacivirus. Comparative phylogenetic analysis of the canine hepacivirus (CHV) confirmed it to be the most genetically similar animal virus homolog of HCV. Bayesian Markov chains Monte Carlo and associated time to most recent common ancestor analyses suggest a mean recent divergence time of CHV and HCV clades within the past 500-1,000 y, well after the domestication of canines. The discovery of CHV may provide new insights into the origin and evolution of HCV and a tractable model system with which to probe the pathogenesis, prevention, and treatment of diseases caused by hepacivirus infection.


Assuntos
Adenovirus Caninos/classificação , Adenovirus Caninos/genética , Hepacivirus/classificação , Hepacivirus/genética , Adenovirus Caninos/patogenicidade , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Cães , Evolução Molecular , Genoma Viral , Hepatite Infecciosa Canina/transmissão , Hepatite Infecciosa Canina/virologia , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , RNA Viral/química , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Tempo , Proteínas do Envelope Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
15.
J Virol ; 86(24): 13756-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23055565

RESUMO

Hantaviruses are important contributors to disease burden in the New World, yet many aspects of their distribution and dynamics remain uncharacterized. To examine the patterns and processes that influence the diversity and geographic distribution of hantaviruses in South America, we performed genetic and phylogeographic analyses of all available South American hantavirus sequences. We sequenced multiple novel and previously described viruses (Anajatuba, Laguna Negra-like, two genotypes of Castelo dos Sonhos, and two genotypes of Rio Mamore) from Brazilian Oligoryzomys rodents and hantavirus pulmonary syndrome cases and identified a previously uncharacterized species of Oligoryzomys associated with a new genotype of Rio Mamore virus. Our analysis indicates that the majority of South American hantaviruses fall into three phylogenetic clades, corresponding to Andes and Andes-like viruses, Laguna Negra and Laguna Negra-like viruses, and Rio Mamore and Rio Mamore-like viruses. In addition, the dynamics and distribution of these viruses appear to be shaped by both the geographic proximity and phylogenetic relatedness of their rodent hosts. The current system of nomenclature used in the hantavirus community is a significant impediment to understanding the ecology and evolutionary history of hantaviruses; here, we suggest strict adherence to a modified taxonomic system, with species and strain designations resembling the numerical system of the enterovirus genus.


Assuntos
Orthohantavírus/classificação , Geografia , Orthohantavírus/isolamento & purificação , Humanos , Filogenia , América do Sul , Especificidade da Espécie
16.
Virol J ; 10: 217, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23816256

RESUMO

BACKGROUND: Usutu virus (USUV), a flavivirus belonging to the Japanese encephalitis serocomplex, was identified in South Africa in 1959 and reported for the first time in Europe in 2001. To date, full length genome sequences have been available only for the reference strain from South Africa and a single isolate from each of Austria, Hungary, and Italy. METHODS: We sequenced four USUV isolates from Senegal and the Central African Republic (CAR) between 1974 and 2007 and compared the sequence data to USUV strains from Austria, Hungary, Italy, and South Africa using a Bayesian Markov chain Monte Carlo method. We further clarified the taxonomic status of a USUV strain isolated in CAR in 1969 and proposed earlier as a subtype of USUV due to an asymetric serological cross-reactivity with USUV reference strain. RESULTS: A comparison of the four newly obtained USUV sequences with those from SouthAfrica_1959, Vienna_2001, Budapest_2005, and Italy_2009 revealed that they are all 96-99% and 99% similar at the nucleotide and amino acid levels, respectively. The phylogenetic relationships between these sequences indicated that a strain isolated in Senegal in 1993 is most closely related to the USUV strains detected in Europe. Analysis of a strain isolated from a human in CAR in 1981 (CAR_1981) revealed the presence of specific amino acid substitutions and a deletion in the 3' noncoding region. This is the first fully sequenced human USUV isolate.The putative USUV subtype, CAR_1969, was 81% and 94% identical at the nucleotide and amino acid levels, respectively, compared to the other USUV strains. Our phylogenetic analyses support the serological identification of CAR_1969 as a subtype of USUV. CONCLUSIONS: In this study, we investigate the genetic diversity of USUV in Africa and the phylogenetic relationship of isolates from Africa and Europe for the first time. The results suggest a low genetic diversity within USUV, the existence of a distinct USUV subtype strain, and support the hypothesis that USUV was introduced to Europe from Africa. Further sequencing and analysis of USUV isolates from other African countries would contribute to a better understanding of its genetic diversity and geographic distribution.


Assuntos
Vírus da Encefalite Japonesa (Subgrupo)/genética , Variação Genética , Genoma Viral , RNA Viral/genética , Análise de Sequência de DNA , República Centro-Africana , Análise por Conglomerados , Vírus da Encefalite Japonesa (Subgrupo)/isolamento & purificação , Humanos , Dados de Sequência Molecular , Filogenia , Senegal , Homologia de Sequência
17.
J Gen Virol ; 93(Pt 9): 1952-1958, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22694903

RESUMO

Human enterovirus 68 (EV-D68) is a historically rarely reported virus linked with respiratory disease. In the past 3 years, a large increase in respiratory disease associated with EV-D68 has been reported, with documented outbreaks in North America, Europe and Asia. In several outbreaks, genetic differences were identified among the circulating strains, indicating the presence of multiple clades. In this report, we analyse archived and novel EV-D68 strains from Africa and the USA, obtained from patients with respiratory illness. Phylogenetic analysis of all EV-D68 sequences indicates that, over the past two decades, multiple clades of the virus have emerged and spread rapidly worldwide. All clades appear to be currently circulating and contributing to respiratory disease.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Enterovirus Humano D/classificação , Enterovirus Humano D/isolamento & purificação , Infecções por Enterovirus/virologia , Adolescente , Adulto , Ásia/epidemiologia , Sequência de Bases , Criança , Pré-Escolar , Doenças Transmissíveis Emergentes/epidemiologia , Enterovirus Humano D/genética , Infecções por Enterovirus/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Saúde Global , Humanos , Lactente , Masculino , Dados de Sequência Molecular , América do Norte/epidemiologia , Filogenia , Adulto Jovem
18.
Mol Biol Evol ; 27(9): 2038-51, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20363828

RESUMO

Double-stranded (ds) DNA viruses are often described as evolving through long-term codivergent associations with their hosts, a pattern that is expected to be associated with low rates of nucleotide substitution. However, the hypothesis of codivergence between dsDNA viruses and their hosts has rarely been rigorously tested, even though the vast majority of nucleotide substitution rate estimates for dsDNA viruses are based upon this assumption. It is therefore important to estimate the evolutionary rates of dsDNA viruses independent of the assumption of host-virus codivergence. Here, we explore the use of temporally structured sequence data within a Bayesian framework to estimate the evolutionary rates for seven human dsDNA viruses, including variola virus (VARV) (the causative agent of smallpox) and herpes simplex virus-1. Our analyses reveal that although the VARV genome is likely to evolve at a rate of approximately 1 x 10(-5) substitutions/site/year and hence approaching that of many RNA viruses, the evolutionary rates of many other dsDNA viruses remain problematic to estimate. Synthetic data sets were constructed to inform our interpretation of the substitution rates estimated for these dsDNA viruses and the analysis of these demonstrated that given a sequence data set of appropriate length and sampling depth, it is possible to use time-structured analyses to estimate the substitution rates of many dsDNA viruses independently from the assumption of host-virus codivergence. Finally, the discovery that some dsDNA viruses may evolve at rates approaching those of RNA viruses has important implications for our understanding of the long-term evolutionary history and emergence potential of this major group of viruses.


Assuntos
Vírus de DNA/genética , DNA/genética , Evolução Molecular , Vírus de DNA/classificação , Modelos Teóricos , Filogenia
19.
J Virol ; 84(2): 765-72, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889759

RESUMO

Although yellow fever has historically been one of the most important viral infections of humans, relatively little is known about the evolutionary processes that shape its genetic diversity. Similarly, there is limited information on the molecular epidemiology of yellow fever virus (YFV) in Africa even though it most likely first emerged on this continent. Through an analysis of complete E gene sequences, including a newly acquired viral collection from Central and West Africa (Senegal, Cameroon, Central African Republic, Côte d'Ivoire, Mali, and Mauritania), we show that YFV exhibits markedly lower rates of evolutionary change than dengue virus, despite numerous biological similarities between these two viruses. From this observation, along with a lack of clock-like evolutionary behavior in YFV, we suggest that vertical transmission, itself characterized by lower replication rates, may play an important role in the evolution of YFV in its enzootic setting. Despite a reduced rate of nucleotide substitution, phylogenetic patterns and estimates of times to common ancestry in YFV still accord well with the dual histories of colonialism and the slave trade, with areas of sylvatic transmission (such as Kedougou, Senegal) acting as enzootic/epidemic foci.


Assuntos
Vírus da Dengue/genética , Evolução Molecular , Proteínas do Envelope Viral/genética , Vírus da Febre Amarela/genética , Animais , Teorema de Bayes , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Humanos , Dados de Sequência Molecular , Filogenia , Seleção Genética , Senegal , Análise de Sequência de DNA , Proteínas do Envelope Viral/química , Febre Amarela/virologia , Vírus da Febre Amarela/isolamento & purificação
20.
Access Microbiol ; 3(4): 000223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151174

RESUMO

Current phylogenetic analysis of the flavivirus genus has identified a group of mosquito-borne viruses for which the vertebrate hosts are currently unknown. Here we report the identification of a novel member of this group from a peridomestic rodent species (Sundamys muelleri) collected in Sarawak, Malaysia in 2016. We propose to name this novel flavivirus Batu Kawa virus after the location in which it was identified, with the abbreviation BKWV. Characterization of the BKWV genome allowed identification of putative mature peptides, potential enzyme motifs and conserved structural elements. Phylogenetic analysis found BKWV to be most closely related to Nhumirim virus (from Brazil) and Barkedji virus (from Senegal and Israel). Both of these viruses have been identified in Culex mosquitoes and belong to a group of viruses with unknown vertebrate hosts. This is the first known report of a member of this group of viruses from a potential mammalian host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA