Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 587(7832): 157-161, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087927

RESUMO

Single-particle electron cryo-microscopy (cryo-EM) is a powerful method for solving the three-dimensional structures of biological macromolecules. The technological development of transmission electron microscopes, detectors and automated procedures in combination with user-friendly image processing software and ever-increasing computational power have made cryo-EM a successful and expanding technology over the past decade1. At resolutions better than 4 Å, atomic model building starts to become possible, but the direct visualization of true atomic positions in protein structure determination requires much higher (better than 1.5 Å) resolution, which so far has not been attained by cryo-EM. The direct visualization of atom positions is essential for understanding the mechanisms of protein-catalysed chemical reactions, and for studying how drugs bind to and interfere with the function of proteins2. Here we report a 1.25 Å-resolution structure of apoferritin obtained by cryo-EM with a newly developed electron microscope that provides, to our knowledge, unprecedented structural detail. Our apoferritin structure has almost twice the 3D information content of the current world record reconstruction (at 1.54 Å resolution3). We can visualize individual atoms in a protein, see density for hydrogen atoms and image single-atom chemical modifications. Beyond the nominal improvement in resolution, we also achieve a substantial improvement in the quality of the cryo-EM density map, which is highly relevant for using cryo-EM in structure-based drug design.


Assuntos
Apoferritinas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/normas , Hidrogênio/química , Microscopia Crioeletrônica/métodos , Desenho de Fármacos , Humanos , Modelos Moleculares , Controle de Qualidade
2.
Nucleic Acids Res ; 50(9): 5282-5298, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489072

RESUMO

Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2-GTP-Met-tRNAiMet and eIF3. The 'open' 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The 'closed' form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Códon de Iniciação/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Humanos , Mamíferos/genética , Iniciação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 540(7631): 80-85, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842381

RESUMO

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Códon de Terminação/química , Códon de Terminação/genética , Códon de Terminação/metabolismo , Microscopia Crioeletrônica , Endorribonucleases/metabolismo , Ativação Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência Aminoácido-Específico/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Ribossomos/química , Ribossomos/enzimologia , Ribossomos/ultraestrutura , Ricina/metabolismo , Selenocisteína/metabolismo
4.
Nature ; 520(7548): 567-70, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25707802

RESUMO

Single particle electron cryomicroscopy (cryo-EM) has recently made significant progress in high-resolution structure determination of macromolecular complexes due to improvements in electron microscopic instrumentation and computational image analysis. However, cryo-EM structures can be highly non-uniform in local resolution and all structures available to date have been limited to resolutions above 3 Å. Here we present the cryo-EM structure of the 70S ribosome from Escherichia coli in complex with elongation factor Tu, aminoacyl-tRNA and the antibiotic kirromycin at 2.65-2.9 Å resolution using spherical aberration (Cs)-corrected cryo-EM. Overall, the cryo-EM reconstruction at 2.9 Å resolution is comparable to the best-resolved X-ray structure of the E. coli 70S ribosome (2.8 Å), but provides more detailed information (2.65 Å) at the functionally important ribosomal core. The cryo-EM map elucidates for the first time the structure of all 35 rRNA modifications in the bacterial ribosome, explaining their roles in fine-tuning ribosome structure and function and modulating the action of antibiotics. We also obtained atomic models for flexible parts of the ribosome such as ribosomal proteins L9 and L31. The refined cryo-EM-based model presents the currently most complete high-resolution structure of the E. coli ribosome, which demonstrates the power of cryo-EM in structure determination of large and dynamic macromolecular complexes.


Assuntos
Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/ultraestrutura , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Antibacterianos/química , Antibacterianos/metabolismo , Microscopia Crioeletrônica/métodos , Ligantes , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/metabolismo , Piridonas/química , Piridonas/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência/ultraestrutura , Ribossomos/metabolismo
5.
Nat Methods ; 12(9): 859-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237227

RESUMO

Molecular machines or macromolecular complexes are supramolecular assemblies of biomolecules with a variety of functions. Structure determination of these complexes in a purified state is often tedious owing to their compositional complexity and the associated relative structural instability. To improve the stability of macromolecular complexes in vitro, we present a generic method that optimizes the stability, homogeneity and solubility of macromolecular complexes by sparse-matrix screening of their thermal unfolding behavior in the presence of various buffers and small molecules. The method includes the automated analysis of thermal unfolding curves based on a biophysical unfolding model for complexes. We found that under stabilizing conditions, even large multicomponent complexes reveal an almost ideal two-state unfolding behavior. We envisage an improved biochemical understanding of purified macromolecules as well as a substantial boost in successful macromolecular complex structure determination by both X-ray crystallography and cryo-electron microscopy.


Assuntos
Algoritmos , Modelos Químicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Software , Sítios de Ligação , Simulação por Computador , Cristalização , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
6.
Nature ; 466(7304): 329-33, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20631791

RESUMO

The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.


Assuntos
Movimento , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , Escherichia coli , Cinética , Modelos Moleculares , Conformação Molecular , RNA de Transferência/genética , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/química , Temperatura , Termodinâmica , Fatores de Tempo
7.
Nat Struct Mol Biol ; 14(4): 318-24, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369838

RESUMO

During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.


Assuntos
Escherichia coli/metabolismo , Movimento , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Biossíntese de Proteínas , RNA Bacteriano/ultraestrutura , RNA Mensageiro/ultraestrutura , RNA de Transferência/ultraestrutura , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/ultraestrutura
8.
Nat Methods ; 5(1): 53-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18157137

RESUMO

We developed a method, named GraFix, that considerably improves sample quality for structure determination by single-particle electron cryomicroscopy (cryo-EM). GraFix uses a glycerol gradient centrifugation step in which the complexes are centrifuged into an increasing concentration of a chemical fixation reagent to prevent aggregation and to stabilize individual macromolecules. The method can be used to prepare samples for negative-stain, cryo-negative-stain and, particularly, unstained cryo-EM.


Assuntos
Microscopia Crioeletrônica/métodos , Aumento da Imagem/métodos , Manejo de Espécimes/métodos , Fixação de Tecidos/métodos
9.
Nat Commun ; 12(1): 5933, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635670

RESUMO

GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP-Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement.


Assuntos
Escherichia coli/genética , Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Ribossômico 23S/química , RNA de Transferência/química , Ribossomos/metabolismo , Sítios de Ligação , Fenômenos Biomecânicos , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/ultraestrutura , Termodinâmica
10.
Nat Commun ; 11(1): 4106, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796827

RESUMO

Alternative ribosome-rescue factor B (ArfB) rescues ribosomes stalled on non-stop mRNAs by releasing the nascent polypeptide from the peptidyl-tRNA. By rapid kinetics we show that ArfB selects ribosomes stalled on short truncated mRNAs, rather than on longer mRNAs mimicking pausing on rare codon clusters. In combination with cryo-electron microscopy we dissect the multistep rescue pathway of ArfB, which first binds to ribosomes very rapidly regardless of the mRNA length. The selectivity for shorter mRNAs arises from the subsequent slow engagement step, as it requires longer mRNA to shift to enable ArfB binding. Engagement results in specific interactions of the ArfB C-terminal domain with the mRNA entry channel, which activates peptidyl-tRNA hydrolysis by the N-terminal domain. These data reveal how protein dynamics translate into specificity of substrate recognition and provide insights into the action of a putative rescue factor in mitochondria.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribossomos/ultraestrutura
11.
Artigo em Inglês | MEDLINE | ID: mdl-28138068

RESUMO

Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation.This article is part of the themed issue 'Perspectives on the ribosome'.


Assuntos
Fatores de Alongamento de Peptídeos/metabolismo , RNA de Transferência Aminoácido-Específico/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Bactérias/metabolismo , Células Eucarióticas/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo
12.
Nat Commun ; 6: 7442, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26072700

RESUMO

The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.


Assuntos
Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Cristalografia por Raios X , Escherichia coli , Proteínas de Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Biossíntese de Proteínas , Proteínas Ribossômicas , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
13.
Structure ; 23(9): 1769-1775, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26278176

RESUMO

We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyer's binding change mechanism in the context of the intact enzyme.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Animais , Centrifugação com Gradiente de Concentração/métodos , Glicerol/química , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação
14.
Nat Struct Mol Biol ; 20(12): 1390-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24186064

RESUMO

During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means.


Assuntos
RNA de Transferência/metabolismo , Ribossomos/metabolismo , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Cinética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência/química , RNA de Transferência/fisiologia , Ribossomos/fisiologia
15.
Biol Chem ; 388(10): 1061-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937620

RESUMO

In bacteria, UGA stop codons can be recoded to direct the incorporation of selenocysteine into proteins on the ribosome. Recoding requires a selenocysteine incorporation sequence (SECIS) downstream of the UGA codon, a specialized translation factor SelB, and the non-canonical Sec-tRNASec, which is formed from Ser-tRNASec by selenocysteine synthase, SelA, using selenophosphate as selenium donor. Here we describe a rapid-kinetics approach to study the mechanism of selenocysteine insertion into proteins on the ribosome. Labeling of SelB, Sec-tRNASec and other components of the translational machinery allows direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer between two fluorophores. Furthermore, the structure of SelA was studied by electron cryomicroscopy (cryo-EM). We report that intact SelA from the thermophilic bacterium Moorella thermoacetica (mthSelA) can be vitrified for cryo-EM using a controlled-environment vitrification system. Two-dimensional image analysis of vitrified mthSelA images shows that SelA can adopt the wide range of orientations required for high-resolution structure determination by cryo-EM. The results indicate that mthSelA forms a homodecamer that has a ring-like structure with five bilobed wings, similar to the structure of the E. coli complex determined previously.


Assuntos
Proteínas de Bactérias/metabolismo , Selenocisteína/metabolismo , Transferases/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Microscopia Crioeletrônica , Cinética , Modelos Biológicos , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/metabolismo , Selenocisteína/química , Thermoanaerobacter/enzimologia , Thermoanaerobacter/metabolismo , Transferases/química , Transferases/metabolismo
16.
Cell ; 121(7): 991-1004, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15989950

RESUMO

The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in cryo-electron-microscopic reconstructions of Escherichia coli ribosomes. The mobile C-terminal helix alpha8 of L10 carries three L7/12 dimers in T. maritima and two in E. coli, in concordance with the different length of helix alpha8 of L10 in these organisms. The stalk is organized into three elements (stalk base, L10 helix alpha8-L7/12 N-terminal-domain complex, and L7/12 C-terminal domains) linked by flexible connections. Highly mobile L7/12 C-terminal domains promote recruitment of translation factors to the ribosome and stimulate GTP hydrolysis by the ribosome bound factors through stabilization of their active GTPase conformation.


Assuntos
Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Thermotoga maritima/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Escherichia coli/genética , Escherichia coli/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Iniciação em Procariotos/metabolismo , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Ribossômico/metabolismo , Proteína Ribossômica L10 , Proteínas Ribossômicas/ultraestrutura , Ribossomos/genética , Ribossomos/ultraestrutura , Thermotoga maritima/genética , Thermotoga maritima/ultraestrutura
17.
Science ; 298(5601): 2191-5, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12481137

RESUMO

Theory predicts the existence of barrierless protein folding. Without barriers, folding should be noncooperative and the degree of native structure should be coupled to overall protein stability. We investigated the thermal unfolding of the peripheral subunit binding domain from Escherichia coli's 2-oxoglutarate dehydrogenase multienzyme complex (termed BBL) with a combination of spectroscopic techniques and calorimetry. Each technique probed a different feature of protein structure. BBL has a defined three-dimensional structure at low temperatures. However, each technique showed a distinct unfolding transition. Global analysis with a statistical mechanical model identified BBL as a downhill-folding protein. Because of BBL's biological function, we propose that downhill folders may be molecular rheostats, in which effects could be modulated by altering the distribution of an ensemble of structures.


Assuntos
Aciltransferases/química , Complexo Cetoglutarato Desidrogenase/química , Dobramento de Proteína , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Escherichia coli/enzimologia , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Modelos Químicos , Modelos Moleculares , Complexos Multienzimáticos/química , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA