Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Development ; 144(8): 1490-1497, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28348169

RESUMO

Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products - embryo and endosperm - and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization.


Assuntos
Arabidopsis/citologia , Arabidopsis/embriologia , Padronização Corporal , Desenvolvimento Vegetal , Epiderme Vegetal/citologia , Epiderme Vegetal/embriologia , Sementes/embriologia , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Fertilização
2.
PLoS Genet ; 13(1): e1006551, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060933

RESUMO

The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1). Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele.


Assuntos
Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Retroalimentação Fisiológica , Inativação Gênica , Histonas/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , Histonas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional
3.
Plant Cell ; 28(6): 1343-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27233529

RESUMO

In angiosperms, seed architecture is shaped by the coordinated development of three genetically different components: embryo, endosperm, and maternal tissues. The relative contribution of these tissues to seed mass and nutrient storage varies considerably among species. The development of embryo, endosperm, or nucellus maternal tissue as primary storage compartments defines three main typologies of seed architecture. It is still debated whether the ancestral angiosperm seed accumulated nutrients in the endosperm or the nucellus. During evolution, plants shifted repeatedly between these two storage strategies through molecular mechanisms that are largely unknown. Here, we characterize the regulatory pathway underlying nucellus and endosperm tissue partitioning in Arabidopsis thaliana We show that Polycomb-group proteins repress nucellus degeneration before fertilization. A signal initiated in the endosperm by the AGAMOUS-LIKE62 MADS box transcription factor relieves this Polycomb-mediated repression and therefore allows nucellus degeneration. Further downstream in the pathway, the TRANSPARENT TESTA16 (TT16) and GORDITA MADS box transcription factors promote nucellus degeneration. Moreover, we demonstrate that TT16 mediates the crosstalk between nucellus and seed coat maternal tissues. Finally, we characterize the nucellus cell death program and its feedback role in timing endosperm development. Altogether, our data reveal the antagonistic development of nucellus and endosperm, in coordination with seed coat differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Sementes/embriologia , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endosperma/embriologia , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Molecules ; 24(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416299

RESUMO

In recent years, bioactive glasses gained increasing scientific interest in bone tissue engineering due to their capability to chemically bond with the host tissue and to induce osteogenesis. As a result, several efforts have been addressed to use bioactive glasses in the production of three-dimensional (3D) porous scaffolds for bone regeneration. In this work, we creatively combine typical concepts of porous glass processing with those of waste management and propose, for the first time, the use of bread as a new sacrificial template for the fabrication of bioactive scaffolds. Preliminary SEM investigations performed on stale bread from industrial wastes revealed a suitable morphology characterized by an open-cell 3D architecture, which is potentially able to allow tissue ingrowth and vascularization. Morphological features, mechanical performances and in vitro bioactivity tests were performed in order to evaluate the properties of these new "sustainable" scaffolds for bone replacement and regeneration. Scaffolds with total porosity ranging from 70 to 85 vol% and mechanical strength comparable to cancellous bone were obtained. Globular hydroxyapatite was observed to form on the surface of the scaffolds after just 48-h immersion in simulated body fluid. The results show great promise and suggest the possibility to use bread as an innovative and inexpensive template for the development of highly-sustainable bone tissue engineering approaches.


Assuntos
Materiais Biocompatíveis/química , Alicerces Teciduais/química , Regeneração Óssea , Vidro/química , Teste de Materiais , Fenômenos Mecânicos , Porosidade , Análise Espectral , Engenharia Tecidual
5.
Plant Physiol ; 172(3): 1732-1745, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613850

RESUMO

Small proteins have long been overlooked due to their poor annotation and the experimental challenges they pose. However, in recent years, their role in various processes has started to emerge, opening new research avenues. Here, we present the isolation and characterization of two allelic mutants, twisted seed1-1 (tws1-1) and tws1-2, which exhibit an array of developmental and biochemical phenotypes in Arabidopsis (Arabidopsis thaliana) seeds. We have identified AT5G01075 as the subtending gene encoding a small protein of 81 amino acids localized in the endoplasmic reticulum. TWS1 is strongly expressed in seeds, where it regulates both embryo development and accumulation of storage compounds. TWS1 loss-of-function seeds exhibit increased starch, sucrose, and protein accumulation at the detriment of fatty acids. TWS1 is also expressed in vegetative and reproductive tissues, where it is responsible for proper epidermal cell morphology and overall plant growth. At the cellular level, TWS1 is responsible for cuticle deposition on epidermal cells and organization of the endomembrane system. Finally, we show that TWS1 is a single-copy gene in Arabidopsis, and it is specifically conserved among angiosperms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Desenvolvimento Vegetal , Sementes/embriologia , Alelos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Carbono/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Fenótipo , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas , Sementes/efeitos dos fármacos , Sementes/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
6.
Plant Physiol ; 165(1): 149-59, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24616380

RESUMO

Truncated transcription factor-like proteins called microProteins (miPs) can modulate transcription factor activities, thereby increasing transcriptional regulatory complexity. To understand their prevalence, evolution, and function, we predicted over 400 genes that encode putative miPs from Arabidopsis (Arabidopsis thaliana) using a bioinformatics pipeline and validated two novel miPs involved in flowering time and response to abiotic and biotic stress. We provide an evolutionary perspective for a class of miPs targeting homeodomain transcription factors in plants and metazoans. We identify domain loss as one mechanism of miP evolution and suggest the possible roles of miPs on the evolution of their target transcription factors. Overall, we reveal a prominent layer of transcriptional regulation by miPs, show pervasiveness of such proteins both within and across genomes, and provide a framework for studying their function and evolution.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Arabidopsis/imunologia , Resistência à Doença/imunologia , Evolução Molecular , Flores/fisiologia , Filogenia , Doenças das Plantas/imunologia , Fatores de Tempo
7.
Plant Cell ; 24(3): 1000-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22427333

RESUMO

The plant seed is a major nutritional source for humans as well as an essential embryo development and dispersal unit. To ensure proper seed formation, fine spatial and temporal coordination between the embryo, endosperm, and maternal seed components must be achieved. However, the intercellular signaling pathways that direct the synchronous development of these tissues are poorly understood. Here we show that the Arabidopsis thaliana peptide ligand CLAVATA3/embryo surrounding region-related8 (CLE8) is exclusively expressed in young embryos and endosperm, and that it acts cell and noncell autonomously to regulate basal embryo cell division patterns, endosperm proliferation, and the timing of endosperm differentiation. CLE8 positively regulates expression of the transcription factor gene Wuschel-like homeobox8 (WOX8), and together CLE8 and WOX8 form a signaling module that promotes seed growth and overall seed size. These results demonstrate that seed development is coordinated by a secreted peptide ligand that plays a key early role in orchestrating cell patterning and proliferation in the embryo and endosperm.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Endosperma/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Diferenciação Celular , Proliferação de Células , Clonagem Molecular , DNA de Plantas/genética , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Sementes/genética , Transdução de Sinais , Fatores de Transcrição/genética
8.
Polymers (Basel) ; 15(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688244

RESUMO

There is a growing interest in tissue engineering, in which biomaterials play a pivotal role in promoting bone regeneration. Furthermore, smart functionalization can provide biomaterials with the additional role of preventing orthopedic infections. Due to the growing microbial resistance to antimicrobials used to treat those infections, metal ions, such as silver, thanks to their known wide range of bactericidal properties, are believed to be promising additives in developing antibacterial biomaterials. In this work, novel poly(ε-caprolactone) (PCL)-based 3D scaffolds have been designed and developed, where the polymer matrix was modified with both silver (Ag), to supply antibacterial behavior, and calcium phosphates (biphasic calcium phosphate, BCP) particles to impart bioactive/bioresorbable properties. The microstructural analysis showed that constructs were characterized by square-shaped macropores, in line with the morphology and size of the templating salts used as pore formers. Degradation tests demonstrated the important role of calcium phosphates in improving PCL hydrophilicity, leading to a higher degradation degree for BCP/PCL composites compared to the neat polymer after 18 days of soaking. The appearance of an inhibition halo around the silver-functionalized PCL scaffolds for assayed microorganisms and a significant (p < 0.05) decrease in both adherent and planktonic bacteria demonstrate the Ag+ release from the 3D constructs. Furthermore, the PCL scaffolds enriched with the lowest silver percentages did not hamper the viability and proliferation of Saos-2 cells. A synergic combination of antimicrobial, osteoproliferative and biodegradable features provided to 3D scaffolds the required potential for bone tissue engineering, beside anti-microbial properties for reduction in prosthetic joints infections.

9.
J Funct Biomater ; 13(2)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35735929

RESUMO

Bioactive glasses are often designed as porous implantable templates in which newly-formed bone can grow in three dimensions (3D). This research work aims to investigate the bone regenerative capability of silicate bioactive glass scaffolds produced by robocasting in comparison with powder and granule-like materials (oxide system: 47.5SiO2-10Na2O-10K2O-10MgO-20CaO-2.5P2O5, mol.%). Morphological and compositional analyses performed by scanning electron microscopy (SEM), combined with energy dispersive spectroscopy (EDS) after the bioactivity studies in a simulated body fluid (SBF) confirmed the apatite-forming ability of the scaffolds, which is key to allowing bone-bonding in vivo. The scaffolds exhibited a clear osteogenic effect upon implantation in rabbit femur and underwent gradual resorption followed by ossification. Full resorption in favor of new bone growth was achieved within 6 months. Osseous defect healing was accompanied by the formation of mature bone with abundant osteocytes and bone marrow cells. These in vivo results support the scaffold's suitability for application in bone tissue engineering and show promise for potential translation to clinical assessment.

10.
Sci Rep ; 12(1): 13859, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974079

RESUMO

In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.


Assuntos
Campos Eletromagnéticos , Engenharia Tecidual , Reatores Biológicos , Osso e Ossos , Diferenciação Celular/genética , Células Cultivadas , Osteogênese/genética , Perfusão , Impressão Tridimensional , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos , Alicerces Teciduais
11.
Plant Physiol ; 154(4): 1721-36, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20884811

RESUMO

Intercellular signaling is essential for the coordination of growth and development in higher plants. Although hundreds of putative receptors have been identified in Arabidopsis (Arabidopsis thaliana), only a few families of extracellular signaling molecules have been discovered, and their biological roles are largely unknown. To expand our insight into the developmental processes potentially regulated by ligand-mediated signal transduction pathways, we undertook a systematic expression analysis of the members of the Arabidopsis CLAVATA3/ESR-RELATED (CLE) small signaling polypeptide family. Using reporter constructs, we show that the CLE genes have distinct and specific patterns of promoter activity. We find that each Arabidopsis tissue expresses at least one CLE gene, indicating that CLE-mediated signaling pathways are likely to play roles in many biological processes during the plant life cycle. Some CLE genes that are closely related in sequence have dissimilar expression profiles, yet in many tissues multiple CLE genes have overlapping patterns of promoter-driven reporter activity. This observation, plus the general absence of detectable morphological phenotypes in cle null mutants, suggest that a high degree of functional redundancy exists among CLE gene family members. Our work establishes a community resource of CLE-related biological materials and provides a platform for understanding and ultimately manipulating many different plant signaling systems.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Genes de Plantas , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas
12.
Materials (Basel) ; 14(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073945

RESUMO

Since 2006, the foam replica method has been commonly recognized as a valuable technology for the production of highly porous bioactive glass scaffolds showing three-dimensional, open-cell structures closely mimicking that of natural trabecular bone. Despite this, there are important drawbacks making the usage of foam-replicated glass scaffolds a difficult achievement in clinical practice; among these, certainly the high operator-dependency of the overall manufacturing process is one of the most crucial, limiting the scalability to industrial production and, thus, the spread of foam-replicated synthetic bone substitutes for effective use in routine management of bone defect. The present review opens a window on the versatile world of the foam replica technique, focusing the dissertation on scaffold properties analyzed in relation to various processing parameters, in order to better understand which are the real issues behind the bottleneck that still puts this technology on the Olympus of the most used techniques in laboratory practice, without moving, unfortunately, to a more concrete application. Specifically, scaffold morphology, mechanical and mass transport properties will be reviewed in detail, considering the various templates proposed till now by several research groups all over the world. In the end, a comprehensive overview of in vivo studies on bioactive glass foams will be provided, in order to put an emphasis on scaffold performances in a complex three-dimensional environment.

13.
Mater Sci Eng C Mater Biol Appl ; 121: 111741, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579436

RESUMO

Copper is one of the most used therapeutic metallic elements in biomedicine, ranging from antibacterial approaches to cancer theranostics. This element could be easily incorporated into different types of biomaterials; specifically, copper-doped bioactive glasses (BGs) provide great opportunities for biomedical engineers and clinicians as regards their excellent biocompatibility and regenerative potential. Although copper-incorporated BGs are mostly used in bone tissue engineering, accelerated soft tissue healing is achievable, too, with interesting potentials in wound treatment and skin repair. Copper can modulate the physico-chemical properties of BGs (e.g., reactivity with bio-fluids) and improve their therapeutic potential. Improving cell proliferation, promoting angiogenesis, reducing or even prohibiting bacterial growth are counted as prominent biological features of copper-doped BGs. Recent studies have also suggested the suitability of copper-doped BGs in cancer photothermal therapy (PTT). However, more research is needed to determine the extent to which copper-doped BGs are actually applicable for tissue engineering and regenerative medicine strategies in the clinic. Moreover, copper-doped BGs in combination with polymers may be considered in the future to produce relatively soft, pliable composites and printable inks for use in biofabrication.


Assuntos
Cobre , Neoplasias , Materiais Biocompatíveis/farmacologia , Cerâmica/farmacologia , Cobre/farmacologia , Vidro , Humanos , Neoplasias/terapia
14.
Acta Biomater ; 119: 405-418, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091624

RESUMO

Proper microstructural and transport properties are fundamental requirements for a suitable scaffold design and realization in tissue engineering applications. Scaffold microstructure (i.e. pore size, shape and distribution) and transport properties (i.e. intrinsic permeability), are commonly recognized as the key parameters related to the biological performance, such as cell attachment, penetration depth and tissue vascularization. While pore characteristics are relatively easy to asses, accurate and reliable evaluation of permeability still remains a challenge. In the present study, the microstructural properties of foam-replicated bioactive glass-derived scaffolds (basic composition 47.5SiO2-2.5P2O5-20CaO-10MgO-10Na2O-10K2O mol.%) were determined as function of the sintering temperature within the range 600-850°C, identified on the basis of thermal analyses that were previously performed on the material. Scaffolds with total porosity between 55 and 84 vol.% and trabecular-like architecture were obtained, with pore morphological features varying according to the sintering temperature. Mathematical modelling, supported by micro-computed tomography (µ-CT) imaging, was implemented to selectively investigate the effect of different pore features on intrinsic permeability, which was determined by laminar airflow alternating pressure wave drop measurements and found to be within 0.051-2.811·10-10 m2. The calculated effective porosity of the scaffolds was in the range of 46 to 66 vol.%, while the average pore diameter assessed by µ-CT varied between 220 and 780 µm, where the values in the lower range were observed for higher sintering temperatures (750-850°C). Experimental results were critically discussed by means of a robust statistical analysis. Finally, the complete microstructural characterization of the scaffolds was achieved by applying the general constitutive equation based on Forchheimer's theory.


Assuntos
Vidro , Alicerces Teciduais , Cerâmica , Permeabilidade , Porosidade , Engenharia Tecidual , Microtomografia por Raio-X
15.
Materials (Basel) ; 14(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443069

RESUMO

In vitro and in vivo studies are fundamental steps in the characterization of new implantable materials to preliminarily assess their biological response. The present study reports the in vitro and in vivo characterizations of a novel experimental silicate bioactive glass (BG) (47.5B, 47.5SiO2-10Na2O-10K2O-10MgO-20CaO-2.5P2O5 mol.%). Cytocompatibility tests were performed using human mature osteoblasts (U2OS), human mesenchymal stem cells (hMSCs) and human endothelial cells (EA.hy926). The release of the early osteogenic alkaline phosphatase (ALP) marker suggested strong pro-osteogenic properties, as the amount was comparable between hMSCs cultivated onto BG surface and cells cultivated onto polystyrene control. Similarly, real-time PCR revealed that the osteogenic collagen I gene was overexpressed in cells cultivated onto BG surface without biochemical induction. Acute toxicity tests for the determination of the median lethal dose (LD50) allowed classifying the analyzed material as a slightly toxic substance with LD50 = 4522 ± 248 mg/kg. A statistically significant difference in bone formation was observed in vivo through comparing the control (untreated) group and the experimental one, proving a clear osteogenic effect induced by the implantation at the defect site. Complete resorption of 47.5B powder was observed after only 3 months in favor of newly formed tissue, thus confirming the high osteostimulatory potential of 47.5B glass.

16.
Materials (Basel) ; 14(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673726

RESUMO

The fight against cancer is an old challenge for mankind. Apart from surgery and chemotherapy, which are the most common treatments, use of radiation represents a promising, less invasive strategy that can be performed both from the outside or inside the body. The latter approach, also known as brachytherapy, relies on the use of implantable beta-emitting seeds or microspheres for killing cancer cells. A set of radioactive glasses have been developed for this purpose but their clinical use is still mainly limited to liver cancer. This review paper provides a picture of the biomedical glasses developed and experimented for brachytherapy so far, focusing the discussion on the production methods and current limitations of the available options to their diffusion in clinical practice. Highly-durable neutron-activatable glasses in the yttria-alumina-silica oxide system are typically preferred in order to avoid the potentially-dangerous release of radioisotopes, while the compositional design of degradable glass systems suitable for use in radiotherapy still remains a challenge and would deserve further investigation in the near future.

17.
Plant J ; 57(4): 579-92, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18980659

RESUMO

The Arabidopsis thaliana genome contains hundreds of genes essential for seed development. Because null mutations in these genes cause embryo lethality, their specific molecular and developmental functions are largely unknown. Here, we identify a role for EMB1611/MEE22, an essential gene in Arabidopsis, in shoot apical meristem maintenance. EMB1611 encodes a large, novel protein with N-terminal coiled-coil regions and two putative transmembrane domains. We show that the partial loss-of-function emb1611-2 mutation causes a range of pleiotropic developmental phenotypes, most dramatically a progressive loss of shoot apical meristem function that causes premature meristem termination. emb1611-2 plants display disorganization of the shoot meristem cell layers early in development, and an associated stem cell fate change to an organogenic identity. Genetic and molecular analysis indicates that EMB1611 is required for maintenance of the CLV-WUS stem cell regulatory pathway in the shoot meristem, but also has WUS-independent activity. In addition, emb1611-2 plants have reduced shoot and root growth, and their rosette leaves form trichomes with extra branches, a defect we associate with an increase in endoreduplication. Our data indicate that EMB1611 functions to maintain cells, particularly those in the shoot meristem, roots and developing rosette leaves, in a proliferative or uncommitted state.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Meristema/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Essenciais , Genes de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Meristema/genética , Mutação , Fenótipo , RNA de Plantas/genética , Células-Tronco/citologia
18.
Materials (Basel) ; 13(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260374

RESUMO

The advent of mesoporous bioactive glasses (MBGs) in applied bio-sciences led to the birth of a new class of nanostructured materials combining triple functionality, that is, bone-bonding capability, drug delivery and therapeutic ion release. However, the development of hierarchical three-dimensional (3D) scaffolds based on MBGs may be difficult due to some inherent drawbacks of MBGs (e.g., high brittleness) and technological challenges related to their fabrication in a multiscale porous form. For example, MBG-based scaffolds produced by conventional porogen-assisted methods exhibit a very low mechanical strength, making them unsuitable for clinical applications. The application of additive manufacturing techniques significantly improved the processing of these materials, making it easier preserving the textural and functional properties of MBGs and allowing stronger scaffolds to be produced. This review provides an overview of the major aspects relevant to 3D printing of MBGs, including technological issues and potential applications of final products in medicine.

19.
Nanomaterials (Basel) ; 10(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371415

RESUMO

Bioactive glasses (BGs) are traditionally known to be able to bond to living bone and stimulate bone regeneration. The production of such materials in a mesoporous form allowed scientists to dramatically expand the versatility of oxide-based glass systems as well as their applications in biomedicine. These nanostructured materials, called mesoporous bioactive glasses (MBGs), not only exhibit an ultrafast mineralization rate but can be used as vehicles for the sustained delivery of drugs, which are hosted inside the mesopores, and therapeutic ions, which are released during material dissolution in contact with biological fluids. This review paper summarizes the main strategies for the preparation of MBGs, as well as their properties and applications in the biomedical field, with an emphasis on the methodological aspects and the promise of hierarchical systems with multiscale porosity.

20.
Materials (Basel) ; 13(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979302

RESUMO

Bioactive sol-gel glasses are attractive biomaterials from both technological and functional viewpoints as they require lower processing temperatures compared to their melt-derived counterparts and exhibit a high specific surface area due to inherent nanoporosity. However, most of these materials are based on relatively simple binary or ternary oxide systems since the synthesis of multicomponent glasses via sol-gel still is a challenge. This work reports for the first time the production and characterization of sol-gel materials based on a six-oxide basic system (SiO2-P2O5-CaO-MgO-Na2O-K2O). It was shown that calcination played a role in inducing the formation of crystalline phases, thus generating glass-ceramic materials. The thermal, microstructural and textural properties, as well as the in vitro bioactivity, of these sol-gel materials were assessed and compared to those of the melt-derived counterpart glass with the same nominal composition. In spite of their glass-ceramic nature, these materials retained an excellent apatite-forming ability, which is key in bone repair applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA