Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191091

RESUMO

OBJECTIVE: Individuals with higher intrinsic cardiorespiratory fitness (CRF) experience decreased rates of cardiometabolic disease and mortality, and high CRF is associated with increased utilization of fatty acids (FAs) for energy. Studies suggest a complex relationship between CRF, diet, and sex with health outcomes, but this interaction is understudied. We hypothesized that FA utilization differences by fitness and sex could be detected in the plasma metabolome when rats or humans were fed a high carbohydrate (HC) or high fat (HF) diet. METHODS: Male and female rats selectively bred for low (LCR) and high (HCR) CRF were fed a chow diet or a sucrose-free HF (45 % fat) or HC (10 % fat) diet. Plasma samples were collected at days 0, 3, and 14. Human plasma data was collected from male and female participants who were randomized into a HC or HF diet for 21 days. Samples were analyzed using liquid chromatography-mass spectrometry and regression statistics were used to quantify the effect of diet, CRF, and sex on the lipidome. RESULTS: In rats, the baseline lipidome is more significantly influenced by sex than by CRF, especially as elevated diglycerides, triglycerides, phosphatidylcholines, and lysophosphatidylcholines in males. A dynamic response to diet was observed 3 days after diet, but after 14 days of either diet, the lipidome was modulated by sex with a larger effect size than by diet. Data from the human study also suggests a sex-dependent response to diet with opposite directionality of affect compared to rats, highlighting species-dependent responses to dietary intervention.


Assuntos
Aptidão Cardiorrespiratória , Ratos , Humanos , Masculino , Feminino , Animais , Lipidômica , Dieta Hiperlipídica/efeitos adversos , Triglicerídeos
2.
Mol Metab ; 68: 101668, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642218

RESUMO

OBJECTIVE: Caloric restriction (CR) is one extrinsic intervention that can improve metabolic health, and it shares many phenotypical parallels with intrinsic high cardiorespiratory fitness (CRF), including reduced adiposity, increased cardiometabolic health, and increased longevity. CRF is a highly heritable trait in humans and has been established in a genetic rat model selectively bred for high (HCR) and low (LCR) CRF, in which the HCR live longer and have reduced body weight compared to LCR. This study addresses whether the inherited high CRF phenotype occurs through similar mechanisms by which CR promotes health and longevity. METHODS: We compared HCR and LCR male rats fed ad libitum (AL) or calorically restricted (CR) for multiple physiological, metabolic, and molecular traits, including running capacity at 2, 8, and 12 months; per-hour metabolic cage activity over daily cycles at 6 and 12 months; and plasma lipidomics, liver and muscle transcriptomics, and body composition after 12 months of treatment. RESULTS: LCR-CR developed a physiological profile that mirrors the high-CRF phenotype in HCR-AL, including reduced adiposity and increased insulin sensitivity. HCR show higher spontaneous activity than LCR. Temporal modeling of hourly energy expenditure (EE) dynamics during the day, adjusted for body weight and hourly activity levels, suggest that CR has an EE-suppressing effect, and high-CRF has an EE-enhancing effect. Pathway analysis of gene transcripts indicates that HCR and LCR both show a response to CR that is similar in the muscle and different in the liver. CONCLUSIONS: CR provides LCR a health-associated positive effect on physiological parameters that strongly resemble HCR. Analysis of whole-body EE and transcriptomics suggests that HCR and LCR show line-dependent responses to CR that may be accreditable to difference in genetic makeup. The results do not preclude the possibility that CRF and CR pathways may converge.


Assuntos
Aptidão Cardiorrespiratória , Corrida , Humanos , Ratos , Masculino , Animais , Restrição Calórica , Corrida/fisiologia , Obesidade/metabolismo , Peso Corporal
3.
Mol Metab ; 76: 101793, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625738

RESUMO

OBJECTIVE: Cardiorespiratory fitness (CRF) is tightly linked with health and longevity and is implicated in metabolic flexibility and substrate metabolism. The high capacity runner (HCR) and low capacity runner (LCR) rat lines are a genetically heterogeneous rat model selected and bred for CRF that reflect CRF in humans by exhibiting differences in nutrient handling. This study aims to differentiate the intrinsic substrate preference of the HCR compared to LCR rats to better understand the intersection of mitochondrial respiration and intrinsic CRF. METHODS: We performed bulk skeletal muscle RNA-Sequencing on male and female HCR and LCR rats and assessed the effect of rat line on mitochondrial gene expression pathways using the MitoCarta3.0 database. In a separate cohort of rats, mitochondria were isolated from skeletal and cardiac muscle and maximal oxidation rates were measured using an Oroboros O2k when provided either pyruvate or fatty acid substrates. RESULTS: The expression of mitochondrial genes are significantly upregulated in HCR skeletal muscle in both male and female rats. In respirometry experiments, fatty acid oxidative capacities were greater in HCR compared to LCR, and male compared to female rats, as a function of both mitochondrial quality and mitochondrial density. This effect was greater in the skeletal muscle than in the heart. Pyruvate oxidation did not differ significantly between lines. CONCLUSIONS: The capacity for increased fatty acid oxidation in the HCR rat is a result of selection for running capacity and is likely a key contributor to the healthy metabolic phenotype of individuals with high CRF.


Assuntos
Aptidão Cardiorrespiratória , Humanos , Feminino , Masculino , Animais , Ratos , Músculo Esquelético , Ácidos Graxos , Mitocôndrias , Estresse Oxidativo
4.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36821378

RESUMO

Adaptation of the islet ß cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in ß cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. ß Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Humanos , Animais , Secreção de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Histonas/genética , Histonas/metabolismo , Epigenoma , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo
5.
Nutrients ; 13(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34684365

RESUMO

As the incidence of obesity and type 2 diabetes (T2D) is occurring at a younger age, studying adolescent nutrient metabolism can provide insights on the development of T2D. Metabolic challenges, including an oral glucose tolerance test (OGTT) can assess the effects of perturbations in nutrient metabolism. Here, we present alterations in the global metabolome in response to an OGTT, classifying the influence of obesity and insulin resistance (IR) in adolescents that arrived at the clinic fasted and in a random-fed state. Participants were recruited as lean (n = 55, aged 8-17 years, BMI percentile 5-85%) and overweight and obese (OVOB, n = 228, aged 8-17 years, BMI percentile ≥ 85%). Untargeted metabolomics profiled 246 annotated metabolites in plasma at t0 and t60 min during the OGTT. Our results suggest that obesity and IR influence the switch from fatty acid (FA) to glucose oxidation in response to the OGTT. Obesity was associated with a blunted decline of acylcarnitines and fatty acid oxidation intermediates. In females, metabolites from the Fasted and Random-Fed OGTT were associated with HOMA-IR, including diacylglycerols, leucine/isoleucine, acylcarnitines, and phosphocholines. Our results indicate that at an early age, obesity and IR may influence the metabolome dynamics in response to a glucose challenge.


Assuntos
Jejum/metabolismo , Comportamento Alimentar , Resistência à Insulina , Metaboloma , Obesidade/metabolismo , Caracteres Sexuais , Adolescente , Glicemia/metabolismo , Criança , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Cinética , Masculino , Obesidade/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA