Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190477, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161866

RESUMO

Comparatively little is known about atmospheric chemistry on Uranus and Neptune, because remote spectral observations of these cold, distant 'Ice Giants' are challenging, and each planet has only been visited by a single spacecraft during brief flybys in the 1980s. Thermochemical equilibrium is expected to control the composition in the deeper, hotter regions of the atmosphere on both planets, but disequilibrium chemical processes such as transport-induced quenching and photochemistry alter the composition in the upper atmospheric regions that can be probed remotely. Surprising disparities in the abundance of disequilibrium chemical products between the two planets point to significant differences in atmospheric transport. The atmospheric composition of Uranus and Neptune can provide critical clues for unravelling details of planet formation and evolution, but only if it is fully understood how and why atmospheric constituents vary in a three-dimensional sense and how material coming in from outside the planet affects observed abundances. Future mission planning should take into account the key outstanding questions that remain unanswered about atmospheric chemistry on Uranus and Neptune, particularly those questions that pertain to planet formation and evolution, and those that address the complex, coupled atmospheric processes that operate on Ice Giants within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

2.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190473, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161857

RESUMO

The international planetary science community met in London in January 2020, united in the goal of realizing the first dedicated robotic mission to the distant ice giants, Uranus and Neptune, as the only major class of solar system planet yet to be comprehensively explored. Ice-giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests to our understanding of exotic water-rich planetary interiors, dynamic and frigid atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue on ice giant system exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

3.
Philos Trans A Math Phys Eng Sci ; 377(2154): 20180408, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31378181

RESUMO

The upper atmosphere of Uranus has been observed to be slowly cooling between 1993 and 2011. New analysis of near-infrared observations of emission from H3+ obtained between 2012 and 2018 reveals that this cooling trend has continued, showing that the upper atmosphere has cooled for 27 years, longer than the length of a nominal season of 21 years. The new observations have offered greater spatial resolution and higher sensitivity than previous ones, enabling the characterization of the H3+ intensity as a function of local time. These profiles peak between 13 and 15 h local time, later than models suggest. The NASA Infrared Telescope Facility iSHELL instrument also provides the detection of a bright H3+ signal on 16 October 2016, rotating into view from the dawn sector. This feature is consistent with an auroral signal, but is the only of its kind present in this comprehensive dataset. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.

4.
Nature ; 475(7354): 71-4, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734704

RESUMO

Convective storms occur regularly in Saturn's atmosphere. Huge storms known as Great White Spots, which are ten times larger than the regular storms, are rarer and occur about once per Saturnian year (29.5 Earth years). Current models propose that the outbreak of a Great White Spot is due to moist convection induced by water. However, the generation of the global disturbance and its effect on Saturn's permanent winds have hitherto been unconstrained by data, because there was insufficient spatial resolution and temporal sampling to infer the dynamics of Saturn's weather layer (the layer in the troposphere where the cloud forms). Theoretically, it has been suggested that this phenomenon is seasonally controlled. Here we report observations of a storm at northern latitudes in the peak of a weak westward jet during the beginning of northern springtime, in accord with the seasonal cycle but earlier than expected. The storm head moved faster than the jet, was active during the two-month observation period, and triggered a planetary-scale disturbance that circled Saturn but did not significantly alter the ambient zonal winds. Numerical simulations of the phenomenon show that, as on Jupiter, Saturn's winds extend without decay deep down into the weather layer, at least to the water-cloud base at pressures of 10-12 bar, which is much deeper than solar radiation penetrates.

5.
J Geophys Res Planets ; 127(6): e2022JE007189, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35865671

RESUMO

We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3-2.5 µm) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5-7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1-2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1-2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ∼0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1-2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately "snow out" (as predicted by Carlson et al. (1988), https://doi.org/10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of "dark spots", such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.

6.
Science ; 374(6570): 968-972, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34709937

RESUMO

Jupiter's atmosphere has a system of zones and belts punctuated by small and large vortices, the largest being the Great Red Spot. How these features change with depth is unknown, with theories of their structure ranging from shallow meteorological features to surface expressions of deep-seated convection. We present observations of atmospheric vortices using the Juno spacecraft's Microwave Radiometer. We found vortex roots that extend deeper than the altitude at which water is expected to condense, and we identified density inversion layers. Our results constrain the three-dimensional structure of Jupiter's vortices and their extension below the clouds.

7.
Space Sci Rev ; 216(1)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32226173

RESUMO

For the Ice Giants, atmospheric entry probes provide critical measurements not attainable via remote observations. Including the 2013-2022 NASA Planetary Decadal Survey, there have been at least five comprehensive atmospheric probe engineering design studies performed in recent years by NASA and ESA. International science definition teams have assessed the science requirements, and each recommended similar measurements and payloads to meet science goals with current instrument technology. The probe system concept has matured and converged on general design parameters that indicate the probe would include a 1-meter class aeroshell and have a mass around 350 to 400-kg. Probe battery sizes vary, depending on the duration of a post-release coast phase, and assumptions about heaters and instrument power needs. The various mission concepts demonstrate the need for advanced power and thermal protection system development. The many completed studies show an Ice Giant mission with an in situ probe is feasible and would be welcomed by the international science community.

8.
Nat Commun ; 9(1): 3564, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177694

RESUMO

Saturn's polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassini's reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly formed NPSV was bounded by a strengthening stratospheric thermal gradient near 78°N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturn's long-lived polar hexagon-which was previously expected to be trapped in the troposphere-can influence the stratospheric temperatures some 300 km above Saturn's clouds.

9.
Nat Commun ; 9(1): 3709, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213944

RESUMO

The radiant energy budget and internal heat are fundamental properties of giant planets, but precise determination of these properties remains a challenge. Here, we report measurements of Jupiter's radiant energy budget and internal heat based on Cassini multi-instrument observations. Our findings reveal that Jupiter's Bond albedo and internal heat, 0.503 ± 0.012 and 7.485 ± 0.160 W m-2 respectively, are significantly larger than 0.343 ± 0.032 and 5.444 ± 0.425 Wm-2, the previous best estimates. The new results help constrain and improve the current evolutionary theories and models for Jupiter. Furthermore, the significant wavelength dependency of Jupiter's albedo implies that the radiant energy budgets and internal heat of the other giant planets in our solar system should be re-examined. Finally, the data sets of Jupiter's characteristics of reflective solar spectral irradiance provide an observational basis for the models of giant exoplanets.

10.
Science ; 319(5859): 79-81, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-18174438

RESUMO

Saturn's poles exhibit an unexpected symmetry in hot, cyclonic polar vortices, despite huge seasonal differences in solar flux. The cores of both vortices are depleted in phosphine gas, probably resulting from subsidence of air into the troposphere. The warm cores are present throughout the upper troposphere and stratosphere at both poles. The thermal structure associated with the marked hexagonal polar jet at 77 degrees N has been observed for the first time. Both the warm cyclonic belt at 79 degrees N and the cold anticyclonic zone at 75 degrees N exhibit the hexagonal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA