Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(41): 20545-20555, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548395

RESUMO

The extraordinarily thin alveolar type 1 (AT1) cell constitutes nearly the entire gas exchange surface and allows passive diffusion of oxygen into the blood stream. Despite such an essential role, the transcriptional network controlling AT1 cells remains unclear. Using cell-specific knockout mouse models, genomic profiling, and 3D imaging, we found that NK homeobox 2-1 (Nkx2-1) is expressed in AT1 cells and is required for the development and maintenance of AT1 cells. Without Nkx2-1, developing AT1 cells lose 3 defining features-molecular markers, expansive morphology, and cellular quiescence-leading to alveolar simplification and lethality. NKX2-1 is also cell-autonomously required for the same 3 defining features in mature AT1 cells. Intriguingly, Nkx2-1 mutant AT1 cells activate gastrointestinal (GI) genes and form dense microvilli-like structures apically. Single-cell RNA-seq supports a linear transformation of Nkx2-1 mutant AT1 cells toward a GI fate. Whole lung ChIP-seq shows NKX2-1 binding to 68% of genes that are down-regulated upon Nkx2-1 deletion, including 93% of known AT1 genes, but near-background binding to up-regulated genes. Our results place NKX2-1 at the top of the AT1 cell transcriptional hierarchy and demonstrate remarkable plasticity of an otherwise terminally differentiated cell type.


Assuntos
Células Epiteliais Alveolares/citologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Pulmão/crescimento & desenvolvimento , Mutação , Organogênese , Fator Nuclear 1 de Tireoide/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Diferenciação Celular , Pulmão/metabolismo , Camundongos , Análise de Célula Única , Fator Nuclear 1 de Tireoide/antagonistas & inibidores , Fator Nuclear 1 de Tireoide/genética
2.
Am J Respir Crit Care Med ; 201(2): 198-211, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738079

RESUMO

Rationale: Alveolar epithelial cell (AEC) injury and dysregulated repair are implicated in the pathogenesis of pulmonary fibrosis. Endoplasmic reticulum (ER) stress in AEC has been observed in idiopathic pulmonary fibrosis (IPF), a disease of aging.Objectives: To investigate a causal role for ER stress in the pathogenesis of pulmonary fibrosis (PF) and therapeutic potential of ER stress inhibition in PF.Methods: The role of ER stress in AEC dysfunction and fibrosis was studied in mice with tamoxifen (Tmx)-inducible deletion of ER chaperone Grp78, a key regulator of ER homeostasis, in alveolar type II (AT2) cells, progenitors of distal lung epithelium, and in IPF lung slice cultures.Measurements and Main Results:Grp78 deletion caused weight loss, mortality, lung inflammation, and spatially heterogeneous fibrosis characterized by fibroblastic foci, hyperplastic AT2 cells, and increased susceptibility of old and male mice, all features of IPF. Fibrosis was more persistent in more severely injured Grp78 knockout (KO) mice. Grp78 KO AT2 cells showed evidence of ER stress, apoptosis, senescence, impaired progenitor capacity, and activation of TGF-ß (transforming growth factor-ß)/SMAD signaling. Glucose-regulated protein 78 is reduced in AT2 cells from old mice and patients with IPF, and ER stress inhibitor tauroursodeoxycholic acid ameliorates ER stress and fibrosis in Grp78 KO mouse and IPF lung slice cultures.Conclusions: These results support a causal role for ER stress and resulting epithelial dysfunction in PF and suggest ER stress as a potential mechanism linking aging to IPF. Modulation of ER stress and chaperone function may offer a promising therapeutic approach for pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Fibrose Pulmonar/genética , Células-Tronco/metabolismo , Fatores Etários , Células Epiteliais Alveolares/patologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/genética , Senescência Celular/genética , Dasatinibe/farmacologia , Chaperona BiP do Retículo Endoplasmático , Técnicas de Inativação de Genes , Proteínas de Choque Térmico/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Quercetina/farmacologia , Quinolinas/farmacologia , Proteínas Smad/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Fator de Transcrição CHOP/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Cell Mol Life Sci ; 76(23): 4663-4672, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31332482

RESUMO

Claudins are a family of integral tight junction proteins that regulate paracellular permeability in polarized epithelia. Overexpression or reduction of claudins can both promote and limit cancer progression, revealing complex dichotomous roles for claudins depending on cellular context. In contrast, recent studies demonstrating tumor formation in claudin knockout mouse models indicate a role for several claudin family members in suppressing tumor initiation. For example, intestine-specific claudin-7 knockout mice spontaneously develop atypical hyperplasia and intestinal adenomas, while claudin-18 knockout mice develop carcinomas in the lung and stomach. Claudin-4, -11, and -15 knockout mice show increased cell proliferation and/or hyperplasia in urothelium, Sertoli cells, and small intestinal crypts, respectively, possibly a precursor to cancer development. Pathways implicated in both cell proliferation and tumorigenesis include Yap/Taz and insulin-like growth factor-1 receptor (IGF-1R)/Akt pathways, among others. Consistent with the tumor suppressive role of claudins shown in mice, in humans, claudin-low breast cancer has been described as a distinct entity with a poor prognosis, and claudin-18-Rho GTPase activating protein 26 (CLDN18-ARHGAP26) fusion protein as a driver gene aberration in diffuse-type gastric cancer due to effects on RhoA. Paradoxically, claudins have also garnered interest as targets for therapy, as they are sometimes aberrantly expressed in cancer cells, which may or may not promote cancer progression. For example, a chimeric monoclonal antibody which targets cells expressing claudin-18.2 through antibody-dependent cell-mediated cytotoxicity has shown promise in multiple phase II studies. In this review, we focus on new findings supporting a tumor suppressive role for claudins during cancer initiation.


Assuntos
Claudinas/genética , Neoplasias/etiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Carcinogênese , Claudinas/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L286-L300, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722567

RESUMO

Using confocal microscopy, we quantitatively assessed uptake, processing, and egress of near-infrared (NIR)-labeled carboxylated polystyrene nanoparticles (PNP) in live alveolar epithelial cells (AEC) during interactions with primary rat AEC monolayers (RAECM). PNP fluorescence intensity (content) and colocalization with intracellular vesicles in a cell were determined over the entire cell volume via z stacking. Isotropic cuvette-based microfluorimetry was used to determine PNP concentration ([PNP]) from anisotropic measurements of PNP content assessed by confocal microscopy. Results showed that PNP uptake kinetics and steady-state intracellular content decreased as diameter increased from 20 to 200 nm. For 20-nm PNP, uptake rate and steady-state intracellular content increased with increased apical [PNP] but were unaffected by inhibition of endocytic pathways. Intracellular PNP increasingly colocalized with autophagosomes and/or lysosomes over time. PNP egress exhibited fast Ca2+ concentration-dependent release and a slower diffusion-like process. Inhibition of microtubule polymerization curtailed rapid PNP egress, resulting in elevated vesicular and intracellular PNP content. Interference with autophagosome formation led to slower PNP uptake and markedly decreased steady-state intracellular content. At steady state, cytosolic [PNP] was higher than apical [PNP], and vesicular [PNP] (~80% of intracellular PNP content) exceeded both cytosolic and intracellular [PNP]. These data are consistent with the following hypotheses: 1) autophagic processing of nanoparticles is essential for maintenance of AEC integrity; 2) altered autophagy and/or lysosomal exocytosis may lead to AEC injury; and 3) intracellular [PNP] in AEC can be regulated, suggesting strategies for enhancement of nanoparticle-driven AEC gene/drug delivery and/or amelioration of AEC nanoparticle-related cellular toxicity.


Assuntos
Células Epiteliais Alveolares/metabolismo , Autofagia/efeitos dos fármacos , Portadores de Fármacos , Exocitose/efeitos dos fármacos , Lisossomos/metabolismo , Nanopartículas/química , Poliestirenos , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Masculino , Tamanho da Partícula , Poliestirenos/química , Poliestirenos/farmacocinética , Poliestirenos/farmacologia , Ratos , Ratos Sprague-Dawley
5.
Int J Cancer ; 143(12): 3169-3180, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325015

RESUMO

Claudins are a family of transmembrane proteins integral to the structure and function of tight junctions (TJ). Disruption of TJ and alterations in claudin expression are important features of invasive and metastatic cancer cells. Expression of CLDN18.1, the lung-specific isoform of CLDN18, is markedly decreased in lung adenocarcinoma (LuAd). Furthermore, we recently observed that aged Cldn18 -/- mice have increased propensity to develop LuAd. We now demonstrate that CLDN18.1 expression correlates inversely with promoter methylation and with LuAd patient mortality. In addition, when restored in LuAd cells that have lost expression, CLDN18.1 markedly attenuates malignant properties including xenograft tumor growth in vivo as well as cell proliferation, migration, invasion and anchorage-independent colony formation in vitro. Based on high throughput analyses of Cldn18 -/- murine lung alveolar epithelial type II cells, as well as CLDN18.1-repleted human LuAd cells, we hypothesized and subsequently confirmed by Western analysis that CLDN18.1 inhibits insulin-like growth factor-1 receptor (IGF-1R) and AKT phosphorylation. Consistent with recent data in Cldn18 -/- knockout mice, expression of CLDN18.1 in human LuAd cells also decreased expression of transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) and their target genes, contributing to its tumor suppressor activity. Moreover, analysis of LuAd cells in which YAP and/or TAZ are silenced with siRNA suggests that inhibition of TAZ, and possibly YAP, is also involved in CLDN18.1-mediated AKT inactivation. Taken together, these data indicate a tumor suppressor role for CLDN18.1 in LuAd mediated by a regulatory network that encompasses YAP/TAZ, IGF-1R and AKT signaling.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Claudinas/fisiologia , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/fisiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Western Blotting , Proliferação de Células , Claudinas/genética , Metilação de DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Metástase Neoplásica , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Receptor IGF Tipo 1/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
6.
Proc Natl Acad Sci U S A ; 112(7): 2263-8, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646474

RESUMO

Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)). Ca(2+)-dependent salivation was abolished in Tmem16A(-/-) mice, demonstrating that Tmem16A is obligatory for Ca(2+)-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A(-/-) mice in response to the ß-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr(∆F508/∆F508)) or ClC-2 (Clcn2(-/-)) Cl(-) channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl(-) channel. Indeed, Cl(-) channel blockers abolished fluid secretion, indicating that Cl(-) channel activity is critical for IPR-stimulated secretion. These data suggest that ß-adrenergic-induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A(-/-) mice identify Tmem16A as the Cl(-) channel essential for muscarinic, Ca(2+)-dependent fluid secretion in adult mouse salivary glands.


Assuntos
Canais de Cloreto/genética , Glândulas Salivares/metabolismo , Células Acinares/metabolismo , Animais , Anoctamina-1 , Camundongos , Camundongos Knockout , Receptores Adrenérgicos beta/fisiologia , Saliva/metabolismo
7.
Am J Respir Cell Mol Biol ; 56(3): 310-321, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27749084

RESUMO

Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type-specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells' roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription-polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell-specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases.


Assuntos
Células Epiteliais Alveolares/metabolismo , Perfilação da Expressão Gênica , Especificidade de Órgãos/genética , Animais , Biomarcadores/metabolismo , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Reprodutibilidade dos Testes , Especificidade da Espécie
8.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1016-L1029, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28839100

RESUMO

There is no therapeutic intervention proven to prevent acute respiratory distress syndrome (ARDS). Novel mechanistic insights into the pathophysiology of ARDS are therefore required. Platelets are implicated in regulating many of the pathogenic processes that occur during ARDS; however, the mechanisms remain elusive. The platelet receptor CLEC-2 has been shown to regulate vascular integrity at sites of acute inflammation. Therefore the purpose of this study was to establish the role of CLEC-2 and its ligand podoplanin in a mouse model of ARDS. Platelet-specific CLEC-2-deficient, as well as alveolar epithelial type I cell (AECI)-specific or hematopoietic-specific podoplanin deficient, mice were established using cre-loxP strategies. Combining these with intratracheal (IT) instillations of lipopolysaccharide (LPS), we demonstrate that arterial oxygen saturation decline in response to IT-LPS in platelet-specific CLEC-2-deficient mice is significantly augmented. An increase in bronchoalveolar lavage (BAL) neutrophils and protein was also observed 48 h post-IT-LPS, with significant increases in pro-inflammatory chemokines detected in BAL of platelet-specific CLEC-2-deficient animals. Deletion of podoplanin from hematopoietic cells but not AECIs also reduces lung function and increases pro-inflammatory chemokine expression following IT-LPS. Furthermore, we demonstrate that following IT-LPS, platelets are present in BAL in aggregates with neutrophils, which allows for CLEC-2 interaction with podoplanin expressed on BAL inflammatory alveolar macrophages. Taken together, these data suggest that the platelet CLEC-2-podoplanin signaling axis regulates the severity of lung inflammation in mice and is a possible novel target for therapeutic intervention in patients at risk of developing ARDS.


Assuntos
Plaquetas/imunologia , Lectinas Tipo C/imunologia , Lesão Pulmonar/imunologia , Macrófagos Alveolares/imunologia , Glicoproteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Animais , Plaquetas/patologia , Deleção de Genes , Lectinas Tipo C/genética , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Macrófagos Alveolares/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais/genética
9.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L131-L142, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864284

RESUMO

Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and ß-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific.


Assuntos
Células Epiteliais/metabolismo , Especificidade de Órgãos , PTEN Fosfo-Hidrolase/metabolismo , Mucosa Respiratória/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Bleomicina , Caderinas/metabolismo , Complacência (Medida de Distensibilidade) , Regulação da Expressão Gênica , Hiperplasia , Marcação In Situ das Extremidades Cortadas , Inflamação/patologia , Integrases/metabolismo , Junções Intercelulares/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Eur J Immunol ; 46(11): 2531-2541, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27569535

RESUMO

Allergic asthma is characterized by a strong Th2 response with inflammatory cell recruitment and structural changes in the lung. Papain is a protease allergen disrupting the airway epithelium triggering a rapid inflammation with eosinophilia mediated by innate lymphoid cell activation (ILC2) and leading to a Th2 immune response. In this study, we focused on inflammatory responses to a single exposure to papain and showed that intranasal administration of papain results in the recruitment of inflammatory cells, including neutrophils and eosinophils with a rapid production of IL-1α, IL-1ß, and IL-33. The inflammatory response is abrogated in the absence of IL-1R1 and MyD88. To decipher the cell type(s) involved in MyD88-dependent IL-1R1/MyD88 signaling, we used new cell-specific MyD88-deficient mice and found that the deletion of MyD88 signaling in single cell types such as T cells, epithelial cells, CD11c-positive or myeloid cells leads to only a partial inhibition compared to complete absence of MyD88, suggesting that several cell types contribute to the response. Importantly, the inflammatory response is largely ST2 and IL-36R independent. In conclusion, IL-1R1 signaling via MyD88 is critical for the first step of inflammatory response to papain.


Assuntos
Alérgenos/imunologia , Imunidade Inata , Pulmão/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Papaína/imunologia , Pneumonia/imunologia , Receptores Tipo I de Interleucina-1/metabolismo , Alérgenos/administração & dosagem , Animais , Eosinófilos/imunologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Pulmão/fisiopatologia , Camundongos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Neutrófilos/imunologia , Papaína/administração & dosagem , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/imunologia , Transdução de Sinais , Células Th2/imunologia
11.
Am J Respir Cell Mol Biol ; 55(1): 135-49, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26816051

RESUMO

Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, has been linked to endoplasmic reticulum (ER) stress. To investigate a causal role for ER stress in BPD pathogenesis, we generated conditional knockout (KO) mice (cGrp78(f/f)) with lung epithelial cell-specific KO of Grp78, a gene encoding the ER chaperone 78-kD glucose-regulated protein (GRP78), a master regulator of ER homeostasis and the unfolded protein response (UPR). Lung epithelial-specific Grp78 KO disrupted lung morphogenesis, causing developmental arrest, increased alveolar epithelial type II cell apoptosis, and decreased surfactant protein and type I cell marker expression in perinatal lungs. cGrp78(f/f) pups died immediately after birth, likely owing to respiratory distress. Importantly, Grp78 KO triggered UPR activation with marked induction of the proapoptotic transcription factor CCAAT/enhancer-binding proteins (C/EBP) homologous protein (CHOP). Increased expression of genes involved in oxidative stress and cell death and decreased expression of genes encoding antioxidant enzymes suggest a role for oxidative stress in alveolar epithelial cell (AEC) apoptosis. Increased Smad3 phosphorylation and expression of transforming growth factor-ß/Smad3 targets Cdkn1a (encoding p21) and Gadd45a suggest that interactions among the apoptotic arm of the UPR, oxidative stress, and transforming growth factor-ß/Smad signaling pathways contribute to Grp78 KO-induced AEC apoptosis and developmental arrest. Chemical chaperone Tauroursodeoxycholic acid reduced UPR activation and apoptosis in cGrp78(f/f) lungs cultured ex vivo, confirming a role for ER stress in observed AEC abnormalities. These results demonstrate a key role for GRP78 in AEC survival and gene expression during lung development through modulation of ER stress, and suggest the UPR as a potential therapeutic target in BPD.


Assuntos
Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostase , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Am J Respir Cell Mol Biol ; 55(3): 395-406, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27064541

RESUMO

Active ion transport by basolateral Na-K-ATPase (Na pump) creates an Na(+) gradient that drives fluid absorption across lung alveolar epithelium. The α1 and ß1 subunits are the most highly expressed Na pump subunits in alveolar epithelial cells (AEC). The specific contribution of the ß1 subunit and the relative contributions of alveolar epithelial type II (AT2) versus type I (AT1) cells to alveolar fluid clearance (AFC) were investigated using two cell type-specific mouse knockout lines in which the ß1 subunit was knocked out in either AT1 cells or both AT1 and AT2 cells. AFC was markedly decreased in both knockout lines, revealing, we believe for the first time, that AT1 cells play a major role in AFC and providing insights into AEC-specific roles in alveolar homeostasis. AEC monolayers derived from knockout mice demonstrated decreased short-circuit current and active Na(+) absorption, consistent with in vivo observations. Neither hyperoxia nor ventilator-induced lung injury increased wet-to-dry lung weight ratios in knockout lungs relative to control lungs. Knockout mice showed increases in Na pump ß3 subunit expression and ß2-adrenergic receptor expression. These results demonstrate a crucial role for the Na pump ß1 subunit in alveolar ion and fluid transport and indicate that both AT1 and AT2 cells make major contributions to these processes and to AFC. Furthermore, they support the feasibility of a general approach to altering alveolar epithelial function in a cell-specific manner that allows direct insights into AT1 versus AT2 cell-specific roles in the lung.


Assuntos
Células Epiteliais Alveolares/metabolismo , Líquidos Corporais/metabolismo , Absorção Fisiológica , Células Epiteliais Alveolares/patologia , Amilorida/farmacologia , Animais , Marcação de Genes , Hiperóxia/complicações , Hiperóxia/patologia , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Knockout , Tamanho do Órgão , Permeabilidade , Subunidades Proteicas/metabolismo , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Edema Pulmonar/fisiopatologia , Receptores Adrenérgicos beta 2/metabolismo , Reprodutibilidade dos Testes , Sódio/metabolismo , Canais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Terbutalina/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
13.
Am J Physiol Lung Cell Mol Physiol ; 310(2): L114-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26545903

RESUMO

Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung.


Assuntos
Células Epiteliais Alveolares/citologia , Antígenos de Diferenciação/metabolismo , Transdiferenciação Celular/fisiologia , Células Epiteliais/citologia , Alvéolos Pulmonares/citologia , Envelhecimento , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Camundongos , Ratos
14.
Am J Respir Cell Mol Biol ; 51(2): 210-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24588076

RESUMO

Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased ß-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase ß1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability.


Assuntos
Claudinas/metabolismo , Células Epiteliais/metabolismo , Alvéolos Pulmonares/metabolismo , Junções Íntimas/metabolismo , Animais , Células Cultivadas , Claudina-3/metabolismo , Claudina-4/metabolismo , Claudina-5/metabolismo , Claudinas/deficiência , Claudinas/genética , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Impedância Elétrica , Genótipo , Homeostase , Humanos , Transporte de Íons , Camundongos , Camundongos Knockout , Ocludina/metabolismo , Permeabilidade , Fenótipo , Alvéolos Pulmonares/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
15.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L524-36, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25106430

RESUMO

Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury.


Assuntos
Claudina-4/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/fisiopatologia , Células Epiteliais Alveolares/fisiologia , Animais , Permeabilidade Capilar , Células Cultivadas , Claudina-4/metabolismo , Feminino , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Hiperóxia/genética , Hiperóxia/metabolismo , Pulmão/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Fenótipo , Transcriptoma , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
16.
Am J Physiol Lung Cell Mol Physiol ; 307(6): L449-59, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25106429

RESUMO

The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Epiteliais , Alvéolos Pulmonares , Cicatrização , Animais , Proteínas de Transporte/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Membrana , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia
17.
J Biol Chem ; 287(10): 7026-38, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22241478

RESUMO

Interactions between transforming growth factor-ß (TGF-ß) and Wnt are crucial to many biological processes, although specific targets, rationale for divergent outcomes (differentiation versus block of epithelial proliferation versus epithelial-mesenchymal transition (EMT)) and precise mechanisms in many cases remain unknown. We investigated ß-catenin-dependent and transforming growth factor-ß1 (TGF-ß1) interactions in pulmonary alveolar epithelial cells (AEC) in the context of EMT and pulmonary fibrosis. We previously demonstrated that ICG-001, a small molecule specific inhibitor of the ß-catenin/CBP (but not ß-catenin/p300) interaction, ameliorates and reverses pulmonary fibrosis and inhibits TGF-ß1-mediated α-smooth muscle actin (α-SMA) and collagen induction in AEC. We now demonstrate that TGF-ß1 induces LEF/TCF TOPFLASH reporter activation and nuclear ß-catenin accumulation, while LiCl augments TGF-ß-induced α-SMA expression, further confirming co-operation between ß-catenin- and TGF-ß-dependent signaling pathways. Inhibition and knockdown of Smad3, knockdown of ß-catenin and overexpression of ICAT abrogated effects of TGF-ß1 on α-SMA transcription/expression, indicating a requirement for ß-catenin in these Smad3-dependent effects. Following TGF-ß treatment, co-immunoprecipitation demonstrated direct interaction between endogenous Smad3 and ß-catenin, while chromatin immunoprecipitation (ChIP)-re-ChIP identified spatial and temporal regulation of α-SMA via complex formation among Smad3, ß-catenin, and CBP. ICG-001 inhibited α-SMA expression/transcription in response to TGF-ß as well as α-SMA promoter occupancy by ß-catenin and CBP, demonstrating a previously unknown requisite TGF-ß1/ß-catenin/CBP-mediated pro-EMT signaling pathway. Clinical relevance was shown by ß-catenin/Smad3 co-localization and CBP expression in AEC of IPF patients. These findings suggest a new therapeutic approach to pulmonary fibrosis by specifically uncoupling CBP/catenin-dependent signaling downstream of TGF-ß.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , beta Catenina/metabolismo , Actinas/biossíntese , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Ligação a CREB , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Fibrose Pulmonar/genética , Pirimidinonas/farmacologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , beta Catenina/genética
18.
J Pathol ; 226(4): 633-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21984393

RESUMO

Evidence suggests epithelial-mesenchymal transition (EMT) as one potential source of fibroblasts in idiopathic pulmonary fibrosis. To assess the contribution of alveolar epithelial cell (AEC) EMT to fibroblast accumulation in vivo following lung injury and the influence of extracellular matrix on AEC phenotype in vitro, Nkx2.1-Cre;mT/mG mice were generated in which AECs permanently express green fluorescent protein (GFP). On days 17-21 following intratracheal bleomycin administration, ~4% of GFP-positive epithelial-derived cells expressed vimentin or α-smooth muscle actin (α-SMA). Primary AECs from Nkx2.1-Cre;mT/mG mice cultured on laminin-5 or fibronectin maintained an epithelial phenotype. In contrast, on type I collagen, cells of epithelial origin displayed nuclear localization of Smad3, acquired spindle-shaped morphology, expressed α-SMA and phospho-Smad3, consistent with activation of the transforming growth factor-ß (TGFß) signalling pathway and EMT. α-SMA induction and Smad3 nuclear localization were blocked by the TGFß type I receptor (TßRI, otherwise known as Alk5) inhibitor SB431542, while AEC derived from Nkx2.1-Cre;Alk5(flox/KO) mice did not undergo EMT on collagen, consistent with a requirement for signalling via Alk5 in collagen-induced EMT. Inability of a pan-specific TGFß neutralizing antibody to inhibit effects of collagen together with absence of active TGFß in culture supernatants is consistent with TGFß ligand-independent activation of Smad signalling. These results support the notion that AECs can acquire a mesenchymal phenotype following injury in vivo and implicate type I collagen as a key regulator of EMT in AECs through signalling via Alk5, likely in a TGFß ligand-independent manner.


Assuntos
Células Epiteliais Alveolares/patologia , Colágeno Tipo I/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Fibrose Pulmonar/patologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Actinas/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Angiotensina II/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Benzamidas/farmacologia , Bleomicina/toxicidade , Células Cultivadas , Dioxóis/farmacologia , Modelos Animais de Doenças , Feminino , Ligantes , Masculino , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais , Vimentina/metabolismo
19.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905051

RESUMO

Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.

20.
Cell Rep ; 42(12): 113286, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995179

RESUMO

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA