RESUMO
Pyrenoids are subcompartments of algal chloroplasts that increase the efficiency of Rubisco-driven CO2 fixation. Diatoms fix up to 20% of global CO2, but their pyrenoids remain poorly characterized. Here, we used in vivo photo-crosslinking to identify pyrenoid shell (PyShell) proteins, which we localized to the pyrenoid periphery of model pennate and centric diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. In situ cryo-electron tomography revealed that pyrenoids of both diatom species are encased in a lattice-like protein sheath. Single-particle cryo-EM yielded a 2.4-Å-resolution structure of an in vitro TpPyShell1 lattice, which showed how protein subunits interlock. T. pseudonana TpPyShell1/2 knockout mutants had no PyShell sheath, altered pyrenoid morphology, and a high-CO2 requiring phenotype, with reduced photosynthetic efficiency and impaired growth under standard atmospheric conditions. The structure and function of the diatom PyShell provide a molecular view of how CO2 is assimilated in the ocean, a critical ecosystem undergoing rapid change.
Assuntos
Dióxido de Carbono , Diatomáceas , Fotossíntese , Diatomáceas/metabolismo , Diatomáceas/genética , Dióxido de Carbono/metabolismo , Microscopia Crioeletrônica , Cloroplastos/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Ciclo do CarbonoRESUMO
In plants and algae, light serves both as the energy source for photosynthesis and a biological signal that triggers cellular responses via specific sensory photoreceptors. Red light is perceived by bilin-containing phytochromes and blue light by the flavin-containing cryptochromes and/or phototropins (PHOTs), the latter containing two photosensory light, oxygen, or voltage (LOV) domains. Photoperception spans several orders of light intensity, ranging from far below the threshold for photosynthesis to values beyond the capacity of photosynthetic CO2 assimilation. Excess light may cause oxidative damage and cell death, processes prevented by enhanced thermal dissipation via high-energy quenching (qE), a key photoprotective response. Here we show the existence of a molecular link between photoreception, photosynthesis, and photoprotection in the green alga Chlamydomonas reinhardtii. We show that PHOT controls qE by inducing the expression of the qE effector protein LHCSR3 (light-harvesting complex stress-related protein 3) in high light intensities. This control requires blue-light perception by LOV domains on PHOT, LHCSR3 induction through PHOT kinase, and light dissipation in photosystem II via LHCSR3. Mutants deficient in the PHOT gene display severely reduced fitness under excessive light conditions, indicating that the sensing, utilization, and dissipation of light is a concerted process that plays a vital role in microalgal acclimation to environments of variable light intensities.
Assuntos
Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Retroalimentação Fisiológica/efeitos da radiação , Transdução de Sinal Luminoso/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Fototropinas/metabolismo , Aclimatação/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Chlamydomonas reinhardtii/genética , Cor , Complexos de Proteínas Captadores de Luz/biossíntese , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fototropinas/química , Fototropinas/genética , Proteínas Quinases/química , Proteínas Quinases/metabolismoRESUMO
Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.
Assuntos
Organismos Aquáticos/metabolismo , Dióxido de Carbono/metabolismo , Diatomáceas/citologia , Diatomáceas/metabolismo , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo , Força Próton-Motriz , Trifosfato de Adenosina/metabolismo , Organismos Aquáticos/citologia , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Ciclo do Carbono , Diatomáceas/enzimologia , Diatomáceas/genética , Ecossistema , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , NADP/metabolismo , Oceanos e Mares , Oxirredução , Oxirredutases/deficiência , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/metabolismoRESUMO
The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drastically different timescales from picoseconds to hours. Efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes, including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project, AccliPhot, placing the results in a wider context. The review also highlights the applicability of photosynthetic organisms for industry, particularly with regards to the cultivation of microalgae. It intends to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology.
Assuntos
Aclimatação , Fotossíntese/fisiologia , Plantas , Clorófitas , Modelos Biológicos , Biologia de SistemasRESUMO
In oxygenic photosynthesis, light produces ATP plus NADPH via linear electron transfer, i.e. the in-series activity of the two photosystems: PSI and PSII. This process, however, is thought not to be sufficient to provide enough ATP per NADPH for carbon assimilation in the Calvin-Benson-Bassham cycle. Thus, it is assumed that additional ATP can be generated by alternative electron pathways. These circuits produce an electrochemical proton gradient without NADPH synthesis, and, although they often represent a small proportion of the linear electron flow, they could have a huge importance in optimizing CO2 assimilation. In Viridiplantae, there is a consensus that alternative electron flow comprises cyclic electron flow around PSI and the water to water cycles. The latter processes include photosynthetic O2 reduction via the Mehler reaction at PSI, the plastoquinone terminal oxidase downstream of PSII, photorespiration (the oxygenase activity of Rubisco) and the export of reducing equivalents towards the mitochondrial oxidases, through the malate shuttle. In this review, we summarize current knowledge about the role of the water to water cycles in photosynthesis, with a special focus on their occurrence and physiological roles in microalgae.
Assuntos
Microalgas/metabolismo , Ciclo Hidrológico , Respiração Celular/efeitos da radiação , Luz , Microalgas/efeitos da radiação , Organelas/metabolismo , Organelas/efeitos da radiação , Oxirredutases/metabolismoRESUMO
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Assuntos
Dióxido de Carbono , Chlamydomonas reinhardtii , Dióxido de Carbono/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/genética , Proteínas/metabolismo , Chlamydomonas reinhardtii/metabolismoRESUMO
Eukaryotic phytoplankton have a small global biomass but play major roles in primary production and climate. Despite improved understanding of phytoplankton diversity and evolution, we largely ignore the cellular bases of their environmental plasticity. By comparative 3D morphometric analysis across seven distant phytoplankton taxa, we observe constant volume occupancy by the main organelles and preserved volumetric ratios between plastids and mitochondria. We hypothesise that phytoplankton subcellular topology is modulated by energy-management constraints. Consistent with this, shifting the diatom Phaeodactylum from low to high light enhances photosynthesis and respiration, increases cell-volume occupancy by mitochondria and the plastid CO2-fixing pyrenoid, and boosts plastid-mitochondria contacts. Changes in organelle architectures and interactions also accompany Nannochloropsis acclimation to different trophic lifestyles, along with respiratory and photosynthetic responses. By revealing evolutionarily-conserved topologies of energy-managing organelles, and their role in phytoplankton acclimation, this work deciphers phytoplankton responses at subcellular scales.
Assuntos
Metabolismo Energético , Imageamento Tridimensional , Fitoplâncton/citologia , Fitoplâncton/fisiologia , Aclimatação/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Luz , Microalgas/metabolismo , Microalgas/efeitos da radiação , Microalgas/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Fitoplâncton/efeitos da radiação , Fitoplâncton/ultraestrutura , Plastídeos/metabolismo , Frações Subcelulares/metabolismoRESUMO
The so-called "complex" plastids from diatoms possessing four envelope membranes are a typical feature of algae that arose from secondary endosymbiosis. Studying isolated plastids from these algae may allow answering a number of fundamental questions regarding diatom photosynthesis and plastid functionality. Due to their complex architecture and their integration into the cellular endoplasmic reticulum (ER) system, their isolation though is still challenging. In this work, we report a reliable isolation technique that is applicable for the two model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. The resulting plastid-enriched fractions are of homogenous quality, almost free from cellular contaminants, and feature structurally intact thylakoids that are capable to perform oxygenic photosynthesis, though in most cases they seem to lack most of the stromal components as well as plastid envelopes.
Assuntos
Fracionamento Celular , Diatomáceas , Plastídeos , Fracionamento Celular/métodos , Células Cultivadas , Centrifugação com Gradiente de Concentração , Diatomáceas/metabolismo , Microscopia de Fluorescência , Plastídeos/metabolismo , Fluxo de TrabalhoRESUMO
Internal chloroplast structures present complex and various characteristics, which are still largely undetermined due to insufficient imaging investigation. Information on chloroplast morphology has traditionally been collected using light microscopy (LM), confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. However, recent technological progresses in the field of microscopy have made it possible to visualize the internal structure of chloroplast in far greater detail and in 3D. Here we recapitulate protocols to visualize chloroplasts from Arabidopsis leaves and Phaeodactylum tricornutum cells with confocal and transmission electron microscopy together with a new technique using a focused ion beam-scanning electron microscope (FIB-SEM) allowing for 3D imaging.
Assuntos
Plastídeos/metabolismo , Plastídeos/ultraestrutura , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Imageamento Tridimensional , Microscopia Confocal , Microscopia Eletrônica , Imagem MolecularRESUMO
Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.
Assuntos
Diatomáceas/fisiologia , Fotossíntese/fisiologia , Plastídeos/metabolismo , Tilacoides/metabolismo , Cloroplastos/metabolismo , Diatomáceas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismoRESUMO
Diatoms contain a secondary plastid that derives from a red algal symbiont. This organelle is limited by four membranes. The two outermost membranes are the chloroplast endoplasmic reticulum membrane (cERM), which is continuous with the host outer nuclear envelope, and the periplastidial membrane (PPM). The two innermost membranes correspond to the outer and inner envelope membranes (oEM and iEM) of the symbiont's chloroplast. Between the PPM and oEM lies a minimized symbiont cytoplasm, the periplastidial compartment (PPC). In Phaeodactylum tricornutum, PPC-resident proteins are localized in "blob-like-structures", which remain associated with plastids after cell disruption. We analyzed disrupted Phaeodactylum cells by focused ion beam scanning electron microscopy, revealing the presence of a vesicular network (VN) in the PPC, at a location consistent with blob-like structures. Presence of a VN in the PPC was confirmed in intact cells. Additionally, direct membrane contacts were observed between the PPM and nuclear inner envelope membrane at the level of the chloroplast-nucleus isthmus. This study provides insights into the PPC ultrastructure and opens perspectives on the function of this residual cytoplasm of red algal origin.
Assuntos
Diatomáceas/ultraestrutura , Citoplasma/ultraestrutura , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Plastídeos/ultraestrutura , Vesículas Transportadoras/ultraestruturaRESUMO
Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
Assuntos
Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Transporte de Íons , Fotossíntese , Tilacoides/metabolismoRESUMO
In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.