Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(13): 5149-5159, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939598

RESUMO

We measured submicron aerosols (PM1) at a beachfront site in Texas in Spring 2021 to characterize the "background" aerosol chemical composition advecting into Texas and the factors controlling this composition. Observations show that marine "background" aerosols from the Gulf of Mexico were highly processed and acidic; sulfate was the most abundant component (on average 57% of total PM1 mass), followed by organic material (26%). These chemical characteristics are similar to those observed at other marine locations globally. However, Gulf "background" aerosols were much more polluted; the average non-refractory (NR-) PM1 mass concentration was 3-70 times higher than that observed in other clean marine atmospheres. Anthropogenic shipping emissions over the Gulf of Mexico explain 78.3% of the total measured "background" sulfate in the Gulf air. We frequently observed haze pollution in the air mass from the Gulf, with significantly elevated concentrations of sulfate, organosulfates, and secondary organic aerosol associated with sulfuric acid. Analysis suggests that aqueous oxidation of shipping emissions over the Gulf of Mexico by peroxides in the particles might potentially be an important pathway for the rapid production of acidic sulfate and organosulfates during the haze episodes under acidic conditions.


Assuntos
Poluentes Atmosféricos , Sulfatos , Sulfatos/análise , Poluentes Atmosféricos/análise , Golfo do México , Oxirredução , Óxidos de Enxofre/análise , Aerossóis/análise , Material Particulado/análise , Monitoramento Ambiental , China
2.
Atmos Environ (1994) ; 2442021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414674

RESUMO

Understanding the drivers for high ozone (O3) and atmospheric particulate matter (PM) concentrations is a pressing issue in urban air quality, as this understanding informs decisions for control and mitigation of these key pollutants. The Houston, TX metropolitan area is an ideal location for studying the intersection between O3 and atmospheric secondary organic carbon (SOC) production due to the diversity of source types (urban, industrial, and biogenic) and the on- and off-shore cycling of air masses over Galveston Bay, TX. Detailed characterization of filter-based samples collected during Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Houston field experiment in September 2013 were used to investigate sources and composition of organic carbon (OC) and potential relationships between daily maximum 8 h average O3 and PM. The current study employed a novel combination of chemical mass balance modeling defining primary (i.e. POC) versus secondary (i.e. SOC) organic carbon and radiocarbon (14C) for apportionment of contemporary and fossil carbon. The apportioned sources include contemporary POC (biomass burning [BB], vegetative detritus), fossil POC (motor vehicle exhaust), biogenic SOC and fossil SOC. The filter-based results were then compared with real-time measurements by aerosol mass spectrometry. With these methods, a consistent urban background of contemporary carbon and motor vehicle exhaust was observed in the Houston metropolitan area. Real-time and filter-based characterization both showed that carbonaceous aerosols in Houston was highly impacted by SOC or oxidized OC, with much higher contributions from biogenic than fossil sources. However, fossil SOC concentration and fractional contribution had a stronger correlation with daily maximum 8 h average O3, peaking during high PM and O3 events. The results indicate that point source emissions processed by on- and off-shore wind cycles likely contribute to peak events for both PM and O3 in the greater Houston metropolitan area.

3.
Environ Sci Technol ; 54(21): 13807-13816, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064461

RESUMO

Atmospheric pollution represents a complex mixture of air chemicals that continually interact and transform, making it difficult to accurately evaluate associated toxicity responses representative of real-world exposure. This study leveraged data from a previously published article and reevaluated lung cell transcriptional response induced by outdoor atmospheric pollution mixtures using field-based exposure conditions in the industrialized Houston Ship Channel. The tested hypothesis was that individual and co-occurring chemicals in the atmosphere relate to altered expression of critical genes involved in inflammation and cancer-related processes in lung cells. Human lung cells were exposed at an air-liquid interface to ambient air mixtures for 4 h, with experiments replicated across 5 days. Real-time monitoring of primary and secondary gas-phase pollutants, as well as other atmospheric conditions, was simultaneously conducted. Transcriptional analysis of exposed cells identified critical genes showing differential expression associated with both individual and chemical mixtures. The individual pollutant identified with the largest amount of associated transcriptional response was benzene. Tumor necrosis factor (TNF) and interferon regulatory factor 1 (IRFN1) were identified as key upstream transcription factor regulators of the cellular response to benzene. This study is among the first to measure lung cell transcriptional responses in relation to real-world, gas-phase air mixtures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Pulmão , Texas
4.
Nature ; 514(7522): 351-4, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25274311

RESUMO

The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.

5.
Environ Sci Technol ; 53(9): 4977-4987, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002496

RESUMO

Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas-particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.


Assuntos
Atmosfera , Sulfatos , Aerossóis , Química Orgânica , Florestas
6.
ACS EST Air ; 1(3): 200-222, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482269

RESUMO

The Alaskan Layered Pollution And Chemical Analysis (ALPACA) field experiment was a collaborative study designed to improve understanding of pollution sources and chemical processes during winter (cold climate and low-photochemical activity), to investigate indoor pollution, and to study dispersion of pollution as affected by frequent temperature inversions. A number of the research goals were motivated by questions raised by residents of Fairbanks, Alaska, where the study was held. This paper describes the measurement strategies and the conditions encountered during the January and February 2022 field experiment, and reports early examples of how the measurements addressed research goals, particularly those of interest to the residents. Outdoor air measurements showed high concentrations of particulate matter and pollutant gases including volatile organic carbon species. During pollution events, low winds and extremely stable atmospheric conditions trapped pollution below 73 m, an extremely shallow vertical scale. Tethered-balloon-based measurements intercepted plumes aloft, which were associated with power plant point sources through transport modeling. Because cold climate residents spend much of their time indoors, the study included an indoor air quality component, where measurements were made inside and outside a house to study infiltration and indoor sources. In the absence of indoor activities such as cooking and/or heating with a pellet stove, indoor particulate matter concentrations were lower than outdoors; however, cooking and pellet stove burns often caused higher indoor particulate matter concentrations than outdoors. The mass-normalized particulate matter oxidative potential, a health-relevant property measured here by the reactivity with dithiothreiol, of indoor particles varied by source, with cooking particles having less oxidative potential per mass than pellet stove particles.

7.
Science ; 382(6668): eadg2551, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856589

RESUMO

The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate.

8.
Sci Total Environ ; 838(Pt 2): 155861, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568171

RESUMO

The population of Texas has increased rapidly in the past decade. The San Antonio Field Study (SAFS) was designed to investigate ozone (O3) production and precursors in this rapidly changing, sprawling metropolitan area. There are still many questions regarding the sources and chemistry of volatile organic compounds (VOCs) in urban areas like San Antonio which are affected by a complex mixture of industry, traffic, biogenic sources and transported pollutants. The goal of the SAFS campaign in May 2017 was to measure inorganic trace gases, VOCs, methane (CH4), and ethane (C2H6). The SAFS field design included two sites to better assess air quality across the metro area: an urban site (Traveler's World; TW) and a downwind/suburban site (University of Texas at San Antonio; UTSA). The results indicated that acetone (2.52 ± 1.17 and 2.39 ± 1.27 ppbv), acetaldehyde (1.45 ± 1.02 and 0.93 ± 0.45 ppbv) and isoprene (0.64 ± 0.49 and 1.21 ± 0.85 ppbv; TW and UTSA, respectively) were the VOCs with the highest concentrations. Additionally, positive matrix factorization showed three dominant factors of VOC emissions: biogenic, aged urban mixed source, and acetone. Methyl vinyl ketone and methacrolein (MVK + MACR) exhibited contributions from both secondary photooxidation of isoprene and direct emissions from traffic. The C2H6:CH4 demonstrated potential influence of oil and gas activities in San Antonio. Moreover, the high O3 days during the campaign were in the NOx-limited O3 formation regime and were preceded by evening peaks in select VOCs, NOx and CO. Overall, quantification of the concentration and trends of VOCs and trace gases in a major city in Texas offers vital information for general air quality management and supports strategies for reducing O3 pollution. The SAFS campaign VOC results will also add to the growing body of literature on urban sources and concentrations of VOCs in major urban areas.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Acetona , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Texas , Compostos Orgânicos Voláteis/análise
9.
ACS Earth Space Chem ; 2(8): 764-777, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33615099

RESUMO

Terrestrial ecosystems are simultaneously the largest source and a major sink of volatile organic compounds (VOCs) to the global atmosphere, and these two-way fluxes are an important source of uncertainty in current models. Here, we apply high-resolution mass spectrometry (proton transfer reaction-quadrupole interface time-of-flight; PTR-QiTOF) to measure ecosystem-atmosphere VOC fluxes across the entire detected mass range (m/z 0-335) over a mixed temperate forest and use the results to test how well a state-of-science chemical transport model (GEOS-Chem CTM) is able to represent the observed reactive carbon exchange. We show that ambient humidity fluctuations can give rise to spurious VOC fluxes with PTR-based techniques and present a method to screen for such effects. After doing so, 377 of the 636 detected ions exhibited detectable gross fluxes during the study, implying a large number of species with active ecosystem-atmosphere exchange. We introduce the reactivity flux as a measure of how Earth-atmosphere fluxes influence ambient OH reactivity and show that the upward total VOC (∑VOC) carbon and reactivity fluxes are carried by a far smaller number of species than the downward fluxes. The model underpredicts the ∑VOC carbon and reactivity fluxes by 40-60% on average. However, the observed net fluxes are dominated (90% on a carbon basis, 95% on a reactivity basis) by known VOCs explicitly included in the CTM. As a result, the largest CTM uncertainties in simulating VOC carbon and reactivity exchange for this environment are associated with known rather than unrepresented species. This conclusion pertains to the set of species detectable by PTR-TOF techniques, which likely represents the majority in terms of carbon mass and OH reactivity, but not necessarily in terms of aerosol formation potential. In the case of oxygenated VOCs, the model severely underpredicts the gross fluxes and the net exchange. Here, unrepresented VOCs play a larger role, accounting for ~30% of the carbon flux and ~50% of the reactivity flux. The resulting CTM biases, however, are still smaller than those that arise from uncertainties for known and represented compounds.

10.
Environ Health Insights ; 9(Suppl 4): 15-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26917966

RESUMO

Current in vitro studies do not typically assess cellular impacts in relation to real-world atmospheric mixtures of gases. In this study, we set out to examine the feasibility of measuring biological responses at the level of gene expression in human lung cells upon direct exposures to air in the field. This study describes the successful deployment of lung cells in the heavily industrialized Houston Ship Channel. By examining messenger RNA (mRNA) levels from exposed lung cells, we identified changes in genes that play a role as inflammatory responders in the cell. The results show anticipated responses from negative and positive controls, confirming the integrity of the experimental protocol and the successful deployment of the in vitro instrument. Furthermore, exposures to ambient conditions displayed robust changes in gene expression. These results demonstrate a methodology that can produce gas-phase toxicity data in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA