Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Wetlands (Wilmington) ; 44(1): 10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188226

RESUMO

Understanding hydrological processes operating on relatively intact blanket bogs provides a scientific basis for establishing achievable restoration targets for damaged sites. A GIS-based hydrological model, developed to assess restoration potential of Irish raised bogs, was adapted and applied to four relatively intact blanket bogs in Ireland. The Modified Flow Accumulation Capacity (MFAC) model utilised high-resolution topographic data to predict surface wetness, based on climatic conditions, contributing catchment and local surface slope. Modifications to MFAC parameters aimed to account for differences in hydrological processes between raised bogs and blanket bogs. Application of a climatic correction factor accounted for variations in effective rainfall between the four study sites, while monitoring of water table levels indicated a log-linear relationship between MFAC values and summer water table levels and range of water table fluctuations. Deviations from the observed relationship between MFAC and water table levels were associated with hydrological pressures, such as artificial drainage or the occurrence of subsurface macropores (peat pipes), which further lowered summer water tables. Despite being effective as a predictor of relative surface wetness, the relationship between MFAC and ecological variables such as Sphagnum spp. cover proved poor, pointing to the impact of past activities and damage caused by anthropogenic pressures. Findings demonstrated MFAC as an effective tool in predicting surface wetness within blanket bog-covered landscapes, thus proving useful to peatland practitioners in planning and prioritising areas for restoration. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01765-5.

2.
J Environ Qual ; 44(5): 1448-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436262

RESUMO

Gravel aquifers act as important potable water sources in central western Europe, yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers and , was used to investigate a calcareous gravel aquifer's ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed relative recoveries could exceed those of H40/1 at monitoring wells, 10 m and 20 m from an injection well, by almost four times; recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.

3.
Sci Total Environ ; 867: 161442, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623671

RESUMO

Conventional views of saltwater intrusion (SWI), where a basal saline wedge extends inland below fresh groundwater, can be complicated by the influence of saltwater cells in the upper part of aquifers in areas affected by tidal cycles. Distinguishing the contribution of each saltwater source may prove fundamental for well design and resource management. Application of time-lapse electrical resistivity imaging (ERI) during a 32-h pumping test in a pristine unconfined coastal sand aquifer, affected by strong tidal ranges (>2 m), aimed to evaluate the potential of the method to characterize the source of induced SWI in four dimensions (three dimensions and time). Water level monitoring during the test revealed that at the end of pumping, the upper 2 m of the aquifer had dewatered in the vicinity of the well field, reversing hydraulic gradients between the aquifer and the sea. This induced SI, with mixing models of well head water quality suggesting that saline water contributions to total discharge rose from 4 % to 8 %. ERI results reflected dewatering through an increase in resistivity in the upper 2-6 m of the aquifer, while a decline in resistivity, relative to background conditions, occurred immediately below this, reflecting the migration of saline water through the upper layers of the aquifer to the pumping well. By contrast no change in resistivity occurred at depth, indicating no significant change in contribution from the basal saline water to discharge. Test findings suggest that future water resource development at the site should focus on close monitoring of shallow pumping, or pumping from deeper parts of the aquifer, while more generally demonstrating the value of time-lapse geophysical methods in informing coastal water resource management.

4.
Environ Sci Technol ; 46(5): 2583-91, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22296282

RESUMO

Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modeling colloid responses suggested adsorption of 1 µg BSA generated the same response as blockage by between 7.1 × 10(8) and 2.3 × 10(9) deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix's colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.


Assuntos
Compostos Férricos/química , Microesferas , Soroalbumina Bovina/química , Dióxido de Silício/química , Adsorção , Animais , Bovinos , Simulação por Computador , Modelos Químicos , Tamanho da Partícula , Porosidade , Eletricidade Estática
6.
Sci Total Environ ; 569-570: 1040-1052, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27432726

RESUMO

Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer.


Assuntos
Água Subterrânea/análise , Nitratos/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Hidrologia , Irlanda
7.
Sci Total Environ ; 541: 949-956, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26470010

RESUMO

Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17 km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality.


Assuntos
Agricultura/métodos , Monitoramento Ambiental , Política Ambiental , Rios/microbiologia , Poluição da Água/análise , Agricultura/legislação & jurisprudência , Animais , Bovinos , Humanos , Estações do Ano , Poluição da Água/estatística & dados numéricos
8.
Sci Total Environ ; 523: 109-19, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25863501

RESUMO

Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected.


Assuntos
Água Subterrânea/química , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Monitoramento Ambiental , Irlanda , Movimentos da Água , Poluentes Químicos da Água
9.
J Contam Hydrol ; 74(1-4): 231-52, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15358494

RESUMO

A column containing four concentric layers of progressively finer-grained glass beads (graded column) was used to study the transport of the bacteriophage T7 in water flowing parallel to layering through a fining-upwards (FU) sedimentary structure. By passing a pulse of T7, and a conservative solute tracer upwards through a column packed with a single bead size (uniform column), the capacity of each bead type to attenuate the bacteriophage was determined. Solute and bacteriophage responses were modelled using an analytical solution to the advection-dispersion equation, with first-order kinetic deposition simulating bacteriophage attenuation. Resulting deposition constants for different flow velocities indicated that filtration theory-determined values differed from experimentally determined values by less than 10%. In contrast, the responses of solute and bacteriophage tracers passing upwards through graded columns could not be reproduced with a single analytical solution. However, a flux-weighted summation of four one-dimensional advective-dispersive analytical terms approximated solute breakthrough curves. The prolonged tailing observed in the resulting curve resembled that typically generated from field-based tracer test data, reflecting the potential importance of textural heterogeneity in the transport of dissolved substances in groundwater. Moreover, bacteriophage deposition terms, determined from filtration theory, reproduced the T7 breakthrough curve once desorption and inactivation on grain surfaces were incorporated. To evaluate the effect of FU sequences on mass transport processes in more detail, bacteriophage passage through sequences resembling those sampled from a FU bed in a fluvioglacial gravel pit were carried out using an analogous approach to that employed in the laboratory. Both solute and bacteriophage breakthrough responses resembled those generated from field-based test data and in the graded column experiments. Comparisons with the results of simulations using averaged hydraulic conductivities show that simulations employing averaged parameters overestimate bacteriophage travel times and underestimate masses recovered and peak concentrations.


Assuntos
Bacteriófagos/fisiologia , Sedimentos Geológicos/virologia , Microbiologia do Solo , Técnicas de Laboratório Clínico , Simulação por Computador , Cinética , Tamanho da Partícula , Porosidade , Movimentos da Água
10.
Sci Total Environ ; 500-501: 224-34, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25217997

RESUMO

Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Hidrologia , Irlanda , Rios/química , Movimentos da Água , Recursos Hídricos/análise , Recursos Hídricos/estatística & dados numéricos , Abastecimento de Água/análise , Abastecimento de Água/estatística & dados numéricos
11.
Vector Borne Zoonotic Dis ; 14(6): 414-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24866204

RESUMO

Salmonella causes about one million illnesses annually in the United States. Although most infections result from foodborne exposures, animal contact is an important mode of transmission. We investigated a case of Salmonella enterica serotype Enteritidis (SE) sternal osteomyelitis in a previously healthy child who cared for two recently deceased guinea pigs (GPs). A case was defined as SE pulsed-field gel electrophoresis (PFGE) XbaI pattern JEGX01.0021, BlnI pattern JEGA26.0002 (outbreak strain) infection occurring during 2010 in a patient who reported GP exposure. To locate outbreak strain isolates, PulseNet and the US Department of Agriculture National Veterinary Service Laboratories (NVSL) databases were queried. Outbreak strain isolates underwent multilocus variable-number tandem repeat analysis (MLVA). Traceback and environmental investigations were conducted at homes, stores, and breeder or broker facilities. We detected 10 cases among residents of eight states and four NVSL GP outbreak strain isolates. One patient was hospitalized; none died. The median patient age was 9.5 (range, 1-61) years. Among 10 patients, two purchased GPs at independent stores, and three purchased GPs at different national retail chain (chain A) store locations; three were chain A employees and two reported GP exposures of unknown characterization. MLVA revealed four related patterns. Tracebacks identified four distributors and 92 sources supplying GPs to chain A, including one breeder potentially supplying GPs to all case-associated chain A stores. All environmental samples were Salmonella culture-negative. A definitive SE-contaminated environmental source was not identified. Because GPs can harbor Salmonella, consumers and pet industry personnel should be educated regarding risks.


Assuntos
Surtos de Doenças , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/isolamento & purificação , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Eletroforese em Gel de Campo Pulsado , Feminino , Cobaias , Humanos , Lactente , Pessoa de Meia-Idade , Animais de Estimação , Infecções por Salmonella/microbiologia , Salmonella enteritidis/genética , Estados Unidos/epidemiologia , Adulto Jovem , Zoonoses
12.
Water Res ; 44(4): 1138-49, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20018336

RESUMO

Attenuation processes controlling virus fate and transport in the vadose zone of karstified systems can strongly influence groundwater quality. This research compares the breakthrough of two bacteriophage tracers (H40/1 and T7), with contrasting properties, at subsurface monitoring points following application onto an overlying composite sequence of thin organic soil and weathered limestone (epikarst). Short pulse multi-tracer test results revealed that T7 (Source concentration, Co=1.8x10(6)pfu/mL) and H40/1 (Co=5.9x10(6)pfu/mL) could reach sampling points 10 m below ground less than 30 min after tracer application. Contrasting deposition rates, determined from simulated tracer responses, reflected the potential of the ground to differentially attenuate viruses. Prolonged application of both T7 (Co=2.3x10(4)pfu/mL) and H40/1 (Co=1.3x10(5)pfu/mL) over a five hour period during a subsequent test, in which ionic strength levels observed at monitoring points rose consistently, corresponded to a rapid rise in T7 levels, followed by a gradual decline before the end of tracer injection; this reflected reaction-limited deposition in the system. T7's response contrasted with that of H40/1, whose concentration remained constant over a three hour period before declining dramatically prior to the end of tracer injection. Subsequent application of lower ionic strength tracer-free flush water generated a rapid rise in H40/1 levels and a more gradual release of T7. Results highlight the benefits of employing prolonged injection multi-tracer tests for identifying processes not apparent from conventional short pulse tests. Study findings demonstrate that despite rapid transport rates, the epikarst is capable of physicochemical filtration of viruses and their remobilization, depending on virus type and hydrochemical conditions.


Assuntos
Carbonato de Cálcio/química , Filtração/métodos , Sedimentos Geológicos/virologia , Bacteriófagos , Monitoramento Ambiental , Água Doce/virologia , Cinética , Modelos Teóricos , Medição de Risco , Eliminação de Resíduos Líquidos , Poluentes da Água/análise
13.
FEMS Microbiol Ecol ; 49(1): 83-95, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712386

RESUMO

Virus inactivation and virus adsorption, resulting from interactions with minerals, constitute important aspects of an aquifers disinfection capacity. Investigations using a 20 cm column filled with medium-grained natural sands demonstrated that the sands can attenuate up to 62% of a pulse of viruses injected. Experiments using repeatedly washed sands had significantly lower attenuation capacity than fresh sands, due to removal of fine-grained (silt and clay-sized) coatings on grain surfaces. X-ray diffraction analyses of the sand, and the associated fine-grained coating indicated that no significant mineralogical differences existed between these two materials. The experimental data suggested that rougher surfaces/crystal edges in the grain coatings reduced repulsive forces between viruses and the sands permitting greater virus adsorption to the column matrix. Soaking all sands with Tryptone solution after testing released adsorbed viruses indicated that short-term viral inactivation due to interactions with the column matrix was a negligible part of the attenuation process.


Assuntos
Bacteriófagos , Dióxido de Silício/química , Inativação de Vírus , Microbiologia da Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA