Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 46(13): 3061-3064, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197379

RESUMO

We report on the enhancement of responsivity by more than one order of magnitude of a silicon-based sub-terahertz detector when a mesoscopic dielectric particle was used to localize incident radiation to a sub-wavelength volume and focus it directly onto the detector. A strained-silicon modulation field-effect transistor was used as a direct detector on an incident terahertz beam at 0.3 THz. A systematic study in which Teflon cubes were placed in front of the detector to focus the terahertz beam was performed. In this study, cubes with different sizes were investigated, and an enhancement of the responsivity up to 11 dB was observed for a cube with an edge length of 3.45 mm (or 3.45λ). Electromagnetic simulation results were in good agreement with the experimental ones and demonstrated that the size of the mesoscopic particle plays an important role in focalizing the electric field within an area below the diffraction limit. This approach provides an efficient, uncostly, and easy to implement method to substantially improve the responsivity and noise equivalent power of sub-terahertz detectors.

2.
Sensors (Basel) ; 21(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498386

RESUMO

This paper reports on a study of the response of a T-gate strained-Si MODFETs (modulation-doped field-effect transistor) under continuous-wave sub-THz excitation. The sub-THz response was measured using a two-tones solid-state source at 0.15 and 0.30 THz. The device response in the photovoltaic mode was non-resonant, in agreement with the Dyakonov and Shur model for plasma waves detectors. The maximum of the photoresponse was clearly higher under THz illumination at 0.15 THz than at 0.3 THz. A numerical study was conducted using three-dimensional (3D) electromagnetic simulations to delve into the coupling of THz radiation to the channel of the transistor. 3D simulations solving the Maxwell equations using a time-domain solver were performed. Simulations considering the full transistor structure, but without taking into account the bonding wires used to contact the transistor pads in experiments, showed an irrelevant role of the gate length in the coupling of the radiation to the device channel. Simulations, in contradiction with measurements, pointed to a better response at 0.3 THz than under 0.15 THz excitation in terms of the normalized electric field inside the channel. When including four 0.25 mm long bonding wires connected to the contact pads on the transistor, the normalized internal electric field induced along the transistor channel by the 0.15 THz beam was increased in 25 dB, revealing, therefore, the important role played by the bonding wires at this frequency. As a result, the more intense response of the transistor at 0.15 THz than at 0.3 THz experimentally found, must be attributed to the bonding wires.

3.
Sensors (Basel) ; 18(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439437

RESUMO

Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 µA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging.

4.
Nanotechnology ; 25(48): 485202, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25382213

RESUMO

We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs.

5.
IEEE Trans Biomed Circuits Syst ; 17(6): 1293-1304, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37399150

RESUMO

A polymer-assisted graphene transfer method is used to transfer sheets of monolayer and multilayer graphene onto the passivation layer of ion-sensitive field effect transistor arrays. The arrays are fabricated using commercial 0.35 µm complementary metal-oxide-semiconductor (CMOS) technology and contain 3874 pixels sensitive to pH changes on the top silicon nitride surface. By inhibiting dispersive ion transport and hydration of this underlying nitride layer, the transferred graphene sheets help address non-idealities in the sensor response while retaining some pH sensitivity due to the presence of ion adsorption sites. Improvements in hydrophilicity and electrical conductivity of the sensing surface after graphene transfer, as well as in-plane molecular diffusion along the graphene-nitride interface, also greatly improve spatial consistency across an array, allowing for ∼20% more pixels to remain within operating range and enhancing sensor reliability. Multilayer graphene offers a better performance trade-off than monolayer graphene, reducing drift rate by ∼25% and drift amplitude by ∼59% with minimal reduction in pH sensitivity. Monolayer graphene offers slightly better temporal and spatial uniformity in performance of a sensing array, which is associated with the consistency in layer thickness and a lower defect density.


Assuntos
Técnicas Biossensoriais , Grafite , Grafite/química , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Semicondutores , Óxidos/química , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA