Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 517(7533): 159-64, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25470055

RESUMO

Navigation requires a sense of direction ('compass'), which in mammals is thought to be provided by head-direction cells, neurons that discharge when the animal's head points to a specific azimuth. However, it remains unclear whether a three-dimensional (3D) compass exists in the brain. Here we conducted neural recordings in bats, mammals well-adapted to 3D spatial behaviours, and found head-direction cells tuned to azimuth, pitch or roll, or to conjunctive combinations of 3D angles, in both crawling and flying bats. Head-direction cells were organized along a functional-anatomical gradient in the presubiculum, transitioning from 2D to 3D representations. In inverted bats, the azimuth-tuning of neurons shifted by 180°, suggesting that 3D head direction is represented in azimuth × pitch toroidal coordinates. Consistent with our toroidal model, pitch-cell tuning was unimodal, circular, and continuous within the available 360° of pitch. Taken together, these results demonstrate a 3D head-direction mechanism in mammals, which could support navigation in 3D space.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Quirópteros/fisiologia , Cabeça/fisiologia , Modelos Neurológicos , Rotação , Percepção Espacial/fisiologia , Animais , Encéfalo/anatomia & histologia , Quirópteros/anatomia & histologia , Voo Animal/fisiologia , Masculino , Orientação/fisiologia , Postura/fisiologia , Memória Espacial/fisiologia
2.
PLoS One ; 6(9): e25461, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980466

RESUMO

Learned motor behaviors require descending forebrain control to be coordinated with midbrain and brainstem motor systems. In songbirds, such as the zebra finch, regular breathing is controlled by brainstem centers, but when the adult songbird begins to sing, its breathing becomes tightly coordinated with forebrain-controlled vocalizations. The periods of silence (gaps) between song syllables are typically filled with brief breaths, allowing the bird to sing uninterrupted for many seconds. While substantial progress has been made in identifying the brain areas and pathways involved in vocal and respiratory control, it is not understood how respiratory and vocal control is coordinated by forebrain motor circuits. Here we combine a recently developed technique for localized brain cooling, together with recordings of thoracic air sac pressure, to examine the role of cortical premotor nucleus HVC (proper name) in respiratory-vocal coordination. We found that HVC cooling, in addition to slowing all song timescales as previously reported, also increased the duration of expiratory pulses (EPs) and inspiratory pulses (IPs). Expiratory pulses, like song syllables, were stretched uniformly by HVC cooling, but most inspiratory pulses exhibited non-uniform stretch of pressure waveform such that the majority of stretch occurred late in the IP. Indeed, some IPs appeared to change duration by the earlier or later truncation of an underlying inspiratory event. These findings are consistent with the idea that during singing the temporal structure of EPs is under the direct control of forebrain circuits, whereas that of IPs can be strongly influenced by circuits downstream of HVC, likely in the brainstem. An analysis of the temporal jitter of respiratory and vocal structure suggests that IPs may be initiated by HVC at the end of each syllable and terminated by HVC immediately before the onset of the next syllable.


Assuntos
Tronco Encefálico/fisiologia , Tentilhões/fisiologia , Prosencéfalo/fisiologia , Respiração , Temperatura , Vocalização Animal/fisiologia , Animais , Tronco Encefálico/citologia , Expiração/fisiologia , Inalação/fisiologia , Masculino , Córtex Motor/citologia , Córtex Motor/fisiologia , Neurônios/citologia , Pressão , Prosencéfalo/citologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA