Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(13): e17417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38808556

RESUMO

A co-evolutionary arms race ensues when parasites exhibit exploitative behaviour, which prompts adaptations in their hosts, in turn triggering counter-adaptations by the parasites. To unravel the genomic basis of this coevolution from the host's perspective, we collected ants of the host species Temnothorax longispinosus, parasitized by the social parasite Temnothorax americanus, from 10 populations in the northeastern United States exhibiting varying levels of parasite prevalence and living under different climatic conditions. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with both prevalence and climate. Our investigation highlighted a multitude of candidate SNPs associated with parasite prevalence, particularly in genes responsible for sensory perception of smell including odorant receptor genes. We further focused on population-specific compositions of cuticular hydrocarbons, a complex trait important for signalling, communication and protection against desiccation. The relative abundances of n-alkanes were correlated with climate, while there was only a trend between parasite prevalence and the relative abundances of known recognition cues. Furthermore, we identified candidate genes likely involved in the synthesis and recognition of specific hydrocarbons. In addition, we analysed the population-level gene expression in the antennae, the primary organ for odorant reception, and established a strong correlation with parasite prevalence. Our comprehensive study highlights the intricate genomic patterns forged by the interplay of diverse selection factors and how these are manifested in the expression of various phenotypes.


Assuntos
Formigas , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Receptores Odorantes , Animais , Formigas/genética , Formigas/parasitologia , Receptores Odorantes/genética , Clima , Interações Hospedeiro-Parasita/genética , Adaptação Fisiológica/genética , Odorantes , Hidrocarbonetos/metabolismo
2.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38725404

RESUMO

Behavioural regulation in insect societies remains a fundamental question in sociobiology. In hymenopteran societies, the queen plays a crucial role in regulating group behaviour by affecting individual behaviour and physiology through modulation of worker gene expression. Honey bee (Apis mellifera) queens signal their presence via queen mandibular pheromone (QMP). While QMP has been shown to influence behaviour and gene expression of young workers, we know little about how these changes translate in older workers. The effects of the queen pheromone could have prolonged molecular impacts on workers that depend on an early sensitive period. We demonstrate that removal of QMP impacts long-term gene expression in the brain and antennae in foragers that were treated early in life (1 day post emergence), but not when treated later in life. Genes important for division of labour, learning, chemosensory perception and ageing were among those differentially expressed in the antennae and brain tissues, suggesting that QMP influences diverse physiological and behavioural processes in workers. Surprisingly, removal of QMP did not have an impact on foraging behaviour. Overall, our study suggests a sensitive period early in the life of workers, where the presence or absence of a queen has potentially life-long effects on transcriptional activity.


Assuntos
Encéfalo , Feromônios , Animais , Abelhas/fisiologia , Abelhas/genética , Abelhas/efeitos dos fármacos , Feromônios/metabolismo , Feromônios/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Feminino , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Antenas de Artrópodes/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34668533

RESUMO

The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-making ants are social parasites that exploit the work force of closely related ant species for social behaviors such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in insect societies. We investigated the evolutionary fate of these chemoreceptors and found that slave-making ant genomes harbored only half as many gustatory receptors as their hosts', potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows striking patterns of convergence across independent origins of parasitism, in particular in orthologs often implicated in sociality like the 9-exon odorant receptors. These convergent losses represent a rare case of convergent molecular evolution at the level of individual genes. Thus, evolution can operate in a way that is both repeatable and reversible when independent ant lineages lose important social traits during the transition to a parasitic lifestyle.


Assuntos
Formigas , Receptores Odorantes , Animais , Formigas/genética , Comportamento Animal/fisiologia , Evolução Molecular , Receptores Odorantes/genética , Comportamento Social
4.
Mol Ecol ; 32(18): 5170-5185, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540194

RESUMO

Insect social parasites are characterized by exploiting the hosts' social behaviour. Why exactly hosts direct their caring behaviour towards these parasites and their offspring remains largely unstudied. One hypothesis is that hosts do not perceive their social environment as altered and accept the parasitic colony as their own. We used the ant Leptothorax acervorum, host of the dulotic, obligate social parasite Harpagoxenus sublaevis, to shed light on molecular mechanisms underlying behavioural exploitation by contrasting tissue-specific transcriptomes in young host workers. Host pupae were experimentally (re-)introduced into fragments of their original, another conspecific, heterospecific or parasitic colony. Brain and antennal mRNA was extracted and sequenced from adult ants after they had lived in the experimental colony for at least 50 days after eclosion. The resulting transcriptomes of L. acervorum revealed that ants were indeed affected by their social environment. Host brain transcriptomes were altered by the presence of social parasites, suggesting that the parasitic environment influences brain activity, which may be linked to behavioural changes. Transcriptional activity in the antennae changed most with the presence of unrelated individuals, regardless of whether they were conspecifics or parasites. This suggests early priming of odour perception, which was further supported by sensory perception of odour as an enriched function of differentially expressed genes. Furthermore, gene expression in the antennae, but not in the brain corresponded to ant worker behaviour before sampling. Our study demonstrated that the exploitation of social behaviours by brood parasites correlates with transcriptomic alterations in the central and peripheral nervous systems.


Assuntos
Formigas , Parasitos , Humanos , Animais , Formigas/genética , Parasitos/genética , Transcriptoma/genética , Interações Hospedeiro-Parasita/genética , Comportamento Social , Encéfalo
5.
Mol Ecol ; 32(15): 4412-4426, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222006

RESUMO

Parasites with complex life cycles are known to induce phenotypic changes in their intermediate hosts to increase transmission to the final host. The magnitude of these changes could increase with the number of parasites, which would be beneficial to co-infecting parasites. Yet, adverse effects of high parasite load (i.e. many parasites in a single host) might stress both hosts and parasites (e.g. through an increased immune response). We investigated the consequences of parasite load on the transcriptional activity and morphology of the cestode Anomotaenia brevis and its intermediate host, the ant Temnothorax nylanderi. We demonstrated that many differentially expressed host genes shifted with parasite load, and their functions indicate a stronger immune response and fight against oxidative stress in heavily infected hosts. The expression of other host genes responded to infection in an all-or-nothing manner, as did the morphology of the host workers. However, the cestodes became smaller when they competed with other parasites for resources from a single host. Their expression profile further indicated shifts in host immune avoidance, starvation resistance and vesicle-mediated transport. In summary, our study reveals clear consequences of parasite load and highlights specific processes and traits affected by this.


Assuntos
Formigas , Cestoides , Parasitos , Animais , Formigas/genética , Interações Hospedeiro-Parasita/genética , Cestoides/genética , Carga Parasitária
6.
Mol Ecol ; 32(21): 5877-5889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795937

RESUMO

Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.


Assuntos
Formigas , Cestoides , Parasitos , Animais , Interações Hospedeiro-Parasita/genética , Proteoma/genética , Proteômica , Formigas/genética
7.
Mol Ecol ; 32(22): 6027-6043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37830492

RESUMO

Social insects are models for studies of phenotypic plasticity. Ant queens and workers vary in fecundity and lifespan, which are enhanced and extended in queens. Yet, the regulatory mechanisms underlying this variation are not well understood. Ant queens live and reproduce for years, so that they need to protect their germline from transposable element (TE) activity, which may be redundant in short-lived, often sterile workers. We analysed the expression of two protective classes of small RNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in various tissues, castes and age classes of the ant Temnothorax rugatulus. In queens, piRNAs were highly abundant in ovaries with TEs being their clear targets, with reduced but still detectable piRNA-specific ping-pong signatures in thorax and brains. piRNA pathway activity varied little with age in queens. Moreover, the reduced ovaries of workers also exhibited similar piRNA activity and this not only in young, fertile workers, but also in older foragers with regressed ovaries. Therefore, these ants protect their germline through piRNA activity, regardless of ovarian development, age or caste, even in sterile workers often considered the soma of the superorganism. Our tissue-specific miRNA analysis detected the expression of 304 miRNAs, of which 105 were expressed in all tissues, 10 enriched in the brain, three in the thorax, whereas 83 were ovarian-specific. We identified ovarian miRNAs whose expression was related to caste, fecundity and age, and which likely regulate group-specific gene expression. sRNA shifts in young- to middle-aged queens were minor, suggesting delayed senescence in this reproductive caste.


Assuntos
Formigas , MicroRNAs , Animais , RNA de Interação com Piwi , Formigas/genética , Fertilidade/genética , MicroRNAs/genética , Células Germinativas
8.
Biol Lett ; 19(7): 20230176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403711

RESUMO

In social hymenopterans, workers specialize in different tasks. Whether a worker nurses the brood or forages is influenced by the responsiveness for task-related cues which in turn is determined by gene expression. Task choice is dynamic and changes throughout a worker's life, e.g. with age or in response to increased demands for certain tasks. Behavioural switches require the ability to adjust gene expression but the mechanisms regulating such transcriptional adaptations remain elusive. We investigated the role of histone acetylation in task specialization and behavioural flexibility in Temnothorax longispinosus ants. By inhibiting p300/CBP histone acetyltransferases (HAT) and manipulating colony composition, we found that HAT inhibition impairs the ability of older workers to switch to brood care. Yet, HAT inhibition increased the ability of young workers to accelerate their behavioural development and switch to foraging. Our data suggest that HAT in combination with social signals indicating task demands play an important role in modulating behaviour. Elevated HAT activity may contribute to keeping young brood carers from leaving the nest, where they would be exposed to high mortality. These findings shed light on the epigenetic processes underlying behavioural flexibility in animals and provide insight into the mechanisms of task specialization in social insects.


Assuntos
Formigas , Animais , Formigas/fisiologia , Comportamento Animal/fisiologia , Comportamento Social
9.
Mol Ecol ; 31(19): 4991-5004, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35920076

RESUMO

The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialized morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in nonparasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of coexpressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.


Assuntos
Formigas , Características de História de Vida , Animais , Formigas/genética , Abelhas/genética , Comportamento Animal , Evolução Biológica , Transcriptoma/genética
10.
BMC Genomics ; 22(1): 871, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861814

RESUMO

BACKGROUND: In insect societies, queens monopolize reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers of many ant species. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. Thus, we investigated the role of histone acetylation in regulating worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (TSA), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. RESULTS: Workers survived better in queenless colonies. They also developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with the chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 altered the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. CONCLUSION: Our results suggest that histone acetylation is involved in the molecular regulation of worker reproduction, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects.


Assuntos
Formigas , Acetilação , Animais , Formigas/genética , Feminino , Fertilidade , Histonas , Humanos , Reprodução/genética , Comportamento Social
11.
Mol Ecol ; 30(10): 2378-2389, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772940

RESUMO

Humans and other social mammals experience isolation from their group as stressful, triggering behavioural and physiological anomalies that reduce fitness. While social isolation has been intensely studied in social mammals, it is less clear how social insects, which evolved sociality independently, respond to isolation. Here we examined whether the typical mammalian responses to social isolation, e.g., an impaired ability to interact socially and immune suppression are also found in social insects. We studied the consequences of social isolation on behaviour and brain gene expression in the ant Temnothorax nylanderi. Following isolation, workers interacted moderately less with adult nestmates, increased the duration of brood contact, and reduced the time spent self-grooming, an important sanitary behaviour. Our brain transcriptome analysis revealed that only a few behaviour-related genes had altered their expression with isolation time. Rather, many genes linked to immune system functioning and stress response had been downregulated. This probably sensitizes isolated individuals to various stressors, in particular because isolated workers exhibit reduced sanitary behaviour. We provide evidence of the diverse consequences of social isolation in social insects, some of which resemble those found in social mammals, suggesting a general link between social well-being, stress tolerance, and immune competence in social animals.


Assuntos
Formigas , Comportamento Animal , Animais , Formigas/genética , Regulação para Baixo , Humanos , Insetos , Comportamento Social , Isolamento Social
12.
Mol Ecol ; 30(11): 2676-2688, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33742503

RESUMO

Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.


Assuntos
Comunicação Animal , Alimentos , Animais , Abelhas/genética , Encéfalo , Expressão Gênica , Odorantes
13.
PLoS Biol ; 16(6): e2005747, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29874231

RESUMO

Division of labor and task specialization explain the success of human and insect societies. Social insect colonies are characterized by division of labor, with workers specializing in brood care early and foraging later in life. Theory posits that this task switching requires shifts in responsiveness to task-related cues, yet experimental evidence is weak. Here, we show that a Vitellogenin (Vg) ortholog identified in an RNAseq study on the ant T. longispinosus is involved in this process: using phylogenetic analyses of Vg and Vg-like genes, we firstly show that this candidate gene does not cluster with the intensively studied honey bee Vg but falls into a separate Vg-like A cluster. Secondly, an experimental knockdown of Vg-like A in the fat body caused a reduction in brood care and an increase in nestmate care in young ant workers. Nestmate care is normally exhibited by older workers. We demonstrate experimentally that this task switch is at least partly based on Vg-like A-associated shifts in responsiveness from brood to worker cues. We thus reveal a novel mechanism leading to early behavioral maturation via changes in social cue responsiveness mediated by Vg-like A and associated pathways, which proximately play a role in regulating division of labor.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Proteínas de Insetos/fisiologia , Vitelogeninas/fisiologia , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Formigas/genética , Abelhas/genética , Abelhas/fisiologia , Sinais (Psicologia) , Corpo Adiposo/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Genes de Insetos , Himenópteros/genética , Himenópteros/fisiologia , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Masculino , Modelos Biológicos , Família Multigênica , Filogenia , Comportamento Social , Especificidade da Espécie , Vitelogeninas/antagonistas & inibidores , Vitelogeninas/genética
14.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658241

RESUMO

During the evolution of social insects, not only did life-history traits diverge, with queens becoming highly fecund and long lived compared with their sterile workers, but also individual traits lost their importance compared with colony-level traits. In solitary animals, fecundity is largely influenced by female size, whereas in eusocial insects, colony size and queen number can affect the egg-laying rate. Here, we focused on the ant Temnothorax rugatulus, which exhibits two queen morphs varying in size and reproductive strategy, correlating with their colony's social organization. We experimentally tested the influence of social structure, colony and body size on queen fecundity and investigated links between body size, metabolic rate and survival under paraquat-induced oxidative stress. To gain insight into the molecular physiology underlying the alternative reproductive strategies, we analysed fat body transcriptomes. Per-queen egg production was lower in polygynous colonies when fecundity was limited by worker care. Colony size was a determinant of fecundity rather than body size or queen number, highlighting the super-organismal properties of these societies. The smaller microgynes were more frequently fed by workers and exhibited an increase in metabolic activity, yet they were similarly resistant to oxidative stress. Small queens differentially expressed metabolic genes in the fat body, indicating that shifts in molecular physiology and resource availability allow microgyne queens to compensate for their small size with a more active metabolism without paying increased mortality costs. We provide novel insights into how life-history traits and their associations were modified during social evolution and adapted to queen reproductive strategies.


Assuntos
Formigas , Características de História de Vida , Animais , Formigas/genética , Feminino , Fertilidade , Humanos , Insetos , Reprodução
15.
Biol Lett ; 17(2): 20200909, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592155

RESUMO

In most organisms, fecundity and longevity are negatively associated and the molecular regulation of these two life-history traits is highly interconnected. In addition, nutrient intake often has opposing effects on lifespan and reproduction. In contrast to solitary insects, the main reproductive individual of social hymenopterans, the queen, is also the most long-lived. During development, queen larvae are well-nourished, but we are only beginning to understand the impact of nutrition on the queens' adult life and the molecular regulation and connectivity of fecundity and longevity. Here, we used two experimental manipulations to alter queen fecundity in the ant Temnothorax rugatulus and investigated associated changes in fat body gene expression. Egg removal triggered a fecundity increase, leading to expression changes in genes with functions in fecundity such as oogenesis and body maintenance. Dietary restriction lowered the egg production of queens and altered the expression of genes linked to autophagy, Toll signalling, cellular homeostasis and immunity. Our study reveals that an experimental increase in fecundity causes the co-activation of reproduction and body maintenance mechanisms, shedding light on the molecular regulation of the link between longevity and fecundity in social insects.


Assuntos
Formigas , Animais , Formigas/genética , Corpo Adiposo , Fertilidade/genética , Longevidade , Reprodução/genética , Regulação para Cima
16.
BMC Genomics ; 21(1): 816, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225893

RESUMO

BACKGROUND: The gut microbiome can influence life history traits associated with host fitness such as fecundity and longevity. In most organisms, these two life history traits are traded-off, while they are positively linked in social insects. In ants, highly fecund queens can live for decades, while their non-reproducing workers exhibit much shorter lifespans. Yet, when fertility is induced in workers by death or removal of the queen, worker lifespan can increase. It is unclear how this positive link between fecundity and longevity is achieved and what role the gut microbiome and the immune system play in this. To gain insights into the molecular regulation of lifespan in social insects, we investigated fat body gene expression and gut microbiome composition in workers of the ant Temnothorax rugatulus in response to an experimental induction of fertility and an immune challenge. RESULTS: Fertile workers upregulated several molecular repair mechanisms, which could explain their extended lifespan. The immune challenge altered the expression of several thousand genes in the fat body, including many immune genes, and, interestingly, this transcriptomic response depended on worker fertility. For example, only fertile, immune-challenged workers upregulated genes involved in the synthesis of alpha-ketoglutarate, an immune system regulator, which extends the lifespan in Caenorhabditis elegans by down-regulating the TOR pathway and reducing oxidant production. Additionally, we observed a dramatic loss in bacterial diversity in the guts of the ants within a day of the immune challenge. Yet, bacterial density did not change, so that the gut microbiomes of many immune challenged workers consisted of only a single or a few bacterial strains. Moreover, the expression of immune genes was linked to the gut microbiome composition, suggesting that the ant host can regulate the microbiome in its gut. CONCLUSIONS: Immune system flare-ups can have negative consequence on gut microbiome diversity, pointing to a previously underrated cost of immunity. Moreover, our results provide important insights into shifts in the molecular regulation of fertility and longevity associated with insect sociality.


Assuntos
Formigas , Microbioma Gastrointestinal , Animais , Formigas/genética , Fertilidade/genética , Humanos , Longevidade , Comportamento Social
17.
Proc Biol Sci ; 287(1926): 20200440, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345162

RESUMO

Offspring of species with facultative family life are able to live with and without parents (i.e. to adjust to extreme changes in their social environment). While these adjustments are well understood on a phenotypic level, their genetic underpinnings remain surprisingly understudied. Investigating gene expression changes in response to parental absence may elucidate the genetic constraints driving evolutionary transitions between solitary and family life. Here, we manipulated maternal presence to observe gene expression changes in the fat body of juvenile European earwigs, an insect with facultative family life. Because parents typically protect offspring against pathogens, expression changes were recorded in pathogen-free and pathogen-exposed environments. We found that manipulating maternal presence changed the expression of 154 genes, including several metabolism and growth-related genes, and that this change depended on pathogen presence. Specifically, localization and cell transporter genes were downregulated in maternal absence without pathogens but upregulated with pathogens. At least one immunity gene (pathogenesis-related protein 5) was affected by pathogen exposure regardless of maternal presence. Overall, our findings explicate how offspring adjust to parental deprivation on a molecular level and reveal that such adjustments heavily depend on pathogens in the environment. This emphasizes the central role of pathogens in family life evolution.


Assuntos
Comportamento Animal , Insetos/fisiologia , Animais , Evolução Biológica , Feminino , Insetos/patogenicidade , Masculino , Transcriptoma
18.
Mol Ecol ; 28(9): 2342-2359, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30903719

RESUMO

Tandem-running is a recruitment behaviour in ants that has been described as a form of teaching, where spatial information possessed by a leader is conveyed to following nestmates. Within Temnothorax ants, tandem-running is used within a variety of contexts, from foraging and nest relocation to-in the case of slavemaking species-slave raiding. Here, we elucidate the transcriptomic basis of scouting, tandem-leading and tandem-following behaviours across two species with divergent lifestyles: the slavemaking Temnothorax americanus and its primary, nonparasitic host T. longispinosus. Analysis of gene expression data from brains revealed that only a small number of unique differentially expressed genes are responsible for scouting and tandem-running. Comparison of orthologous genes between T. americanus and T. longispinosus suggests that tandem-running is characterized by species-specific patterns of gene usage. However, within both species, tandem-leaders showed gene expression patterns median to those of scouts and tandem-followers, which was expected, as leaders can be recruited from either of the other two behavioural states. Most importantly, a number of differentially expressed behavioural genes were found, with functions relating to learning and memory formation in other social and nonsocial insects. This includes a number of up-regulated receptor genes such as a glutamate and dopamine receptor, as well as serine/threonine-protein phosphatases and kinases. Learning and memory genes were specifically up-regulated within scouts and tandem-followers, not only reinforcing previous behavioural studies into how Temnothorax navigate novel environments and share information, but also providing insight into the molecular underpinnings of teaching and learning within social insects.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Regulação da Expressão Gênica , Genes de Insetos , Animais , Formigas/genética , Aprendizagem , Memória/fisiologia , Anotação de Sequência Molecular , Corrida , Regulação para Cima
19.
Mol Ecol ; 28(3): 658-670, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30525254

RESUMO

The ecological success of social insects is based on division of labour, not only between queens and workers, but also among workers. Whether a worker tends the brood or forages is influenced by age, fertility and nutritional status, with brood carers being younger, more fecund and more corpulent. Here, we experimentally disentangle behavioural specialization from age and fertility in Temnothorax longispinosus ant workers and analyse how these parameters are linked to whole-body gene expression. A total of 3,644 genes were associated with behavioural specialization which is ten times more than associated with age and 50 times more than associated with fertility. Brood carers were characterized by an upregulation of three Vitellogenin (Vg) genes, one of which, Vg-like A, was the most differentially expressed gene that was recently shown experimentally to control the switch from brood to worker care. The expression of Conventional Vg was unlinked to behavioural specialization, age or fertility, which contrasts to studies on bees and some ants. Diversity in Vg/Vg-like copy number and expression bias across ants supports subfunctionalization of Vg genes and indicates that some regulatory mechanisms of division of labour diverged in different ant lineages. Simulations revealed that our experimental dissociation of co-varying factors reduced transcriptomic noise, suggesting that confounding factors could potentially explain inconsistencies across transcriptomic studies of behavioural specialization in ants. Thus, our study reveals that worker gene expression is mainly linked to the worker's function for the colony and provides novel insights into the evolution of sociality in ants.


Assuntos
Fatores Etários , Formigas/genética , Comportamento Animal , Fertilidade/genética , Comportamento Social , Animais , Formigas/fisiologia , Transcriptoma
20.
J Therm Biol ; 74: 116-122, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801616

RESUMO

Winter imposes an ecological challenge to animals living in colder climates, especially if these adverse conditions coincide with reproduction and offspring rearing. To overcome this challenge, some insects burrow in the soil to protect adults, larvae, or eggs from negative effects of winter. However, whether this protection is effective against any long-term consequences of changes in winter duration is unclear. Here, we investigated the long-term effects of winter length variation on eggs of the European earwig Forficula auricularia. In this insect, females construct and maintain a burrow between late autumn and spring, in which they provide extensive forms of care to their eggs and then juveniles. We experimentally maintained earwig females under two winter durations of either four or six weeks and examined the resulting effects in terms of 1) hatching date, 2) developmental time of juveniles until adulthood, 3) adult mass at emergence, and 4) investment of adult offspring females in three key immune parameters: hemocyte concentration, phenoloxidase, and prophenoloxidase activities. Because earwigs' resistance against pathogens relies on their social environment, effects of winter length on immunity were tested on females exposed to different social environments: with familiar conspecifics, unfamiliar conspecifics, or in isolation. Our results reveal that after the winter treatments, eggs reared in short winters hatched earlier and the emerging juveniles reached adulthood faster than juveniles from eggs exposed to long winters. We also showed that prophenoloxidase was 30% higher in females from the long compared to short winter treatment, regardless of social environment. Finally, we found that hemocyte counts where twice as high in short compared to long winter females, but only with unfamiliar conspecifics. Overall, our study reveals that maintaining and caring for eggs in a burrow does not prevent the costs associated with increased winter duration.


Assuntos
Temperatura Baixa , Neópteros/fisiologia , Estações do Ano , Animais , Diapausa de Inseto , Feminino , Neópteros/embriologia , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA