Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 38(10): 1731-1745, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34671920

RESUMO

PURPOSE: Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) have shown promise in treating Duchenne muscular dystrophy (DMD). We evaluated a semi-mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) model to capture the relationship between plasma and muscle tissue exposure/response in mdx mice treated by mouse surrogate PPMO. METHODS: A single or repeated (every 4 weeks for 20 weeks) intravenous PPMO dose was administered to mdx mice (n = 6/timepoint). A PK/PD model was built to characterize data via sequential modeling. A 2-compartment model was used to describe plasma PK. A simultaneous tissue PK/PD model was subsequently developed: 2-compartment model to describe muscle PK; linked to an indirect response model describing stimulation of synthesis of skipped transcript, which was in turn linked to stimulation of synthesis of dystrophin protein expression. RESULTS: Model performance assessment via goodness-of-fit plots, visual predictive checks, and accurate parameter estimation indicated robust fits of plasma PK and muscle PK/PD data. The model estimated a PPMO tissue half-life of 5 days-a useful parameter in determining the longevity of PPMOs in tissue and their limited accumulation after multiple doses. Additionally, the model successfully described dystrophin expression after single dosing and associated protein accumulation after multiple dosing (increasing ~ twofold accumulation from the first to last dose). CONCLUSIONS: This first PK/PD model of a PPMO in a DMD disease model will help characterize and predict the time course of PK/PD biomarkers in mdx mice. Furthermore, the model framework can be used to develop clinical PK/PD models and can be extended to other exon-skipping therapies and species.


Assuntos
Peptídeos Penetradores de Células/química , Morfolinos/farmacocinética , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Área Sob a Curva , Simulação por Computador , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Distrofina/genética , Distrofina/metabolismo , Meia-Vida , Humanos , Masculino , Camundongos Endogâmicos mdx , Modelos Biológicos , Modelos Estatísticos , Morfolinos/sangue
2.
Mol Cell Biol ; 38(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224518

RESUMO

Deficiency of huntingtin-interacting protein 1 (Hip1) results in degenerative phenotypes. Here we generated a Hip1 deficiency allele where a floxed transcriptional stop cassette and a human HIP1 cDNA were knocked into intron 1 of the mouse Hip1 locus. CMV-Cre-mediated germ line excision of the stop cassette resulted in expression of HIP1 and rescue of the Hip1 knockout phenotype. Mx1-Cre-mediated excision led to HIP1 expression in spleen, kidney and liver, and also rescued the phenotype. In contrast, hGFAP-Cre-mediated, brain-specific HIP1 expression did not rescue the phenotype. Metabolomics and microarrays of several Hip1 knockout tissues identified low phosphocholine (PC) levels and low glycerophosphodiester phosphodiesterase domain containing 3 (Gdpd3) gene expression. Since Gdpd3 has lysophospholipase D activity that results in the formation of choline, a precursor of PC, Gdpd3 downregulation could lead to the low PC levels. To test whether Gdpd3 contributes to the Hip1 deficiency phenotype, we generated Gdpd3 knockout mice. Double knockout of Gdpd3 and Hip1 worsened the Hip1 phenotype. This suggests that Gdpd3 compensates for Hip1 loss. More-detailed knowledge of how Hip1 deficiency leads to low PC will improve our understanding of HIP1 in choline metabolism in normal and disease states.


Assuntos
Proteínas de Ligação a DNA/deficiência , Endocitose/genética , Diester Fosfórico Hidrolases/genética , Fosforilcolina/metabolismo , Animais , DNA Complementar/genética , Regulação para Baixo/genética , Expressão Gênica/genética , Humanos , Íntrons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
3.
EBioMedicine ; 2(1): 74-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26023681

RESUMO

Despite the potential of whole-genome sequencing (WGS) to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176) and those without (n = 82). Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500) in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS). Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF) variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

4.
Cell Rep ; 5(1): 51-60, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24095735

RESUMO

Chronic myeloid leukemia (CML) and some acute lymphoblastic leukemias are characterized by the t(9;22) chromosome, which encodes the BCR/ABL oncogene. Multiple mouse models of CML express BCR/ABL at high levels from non-Bcr promoters, resulting in the development of leukemias. In contrast, a significant fraction of healthy humans have been found to have BCR/ABL-positive hematopoietic cells. To bridge the gap between the information derived from current mouse models and nonleukemic humans with the BCR/ABL oncogene, we generated a knockin model with BCR/ABL p210 expressed from the Bcr locus. Unlike previous models, expression of BCR/ABL from the knockin allele did not induce leukemia. BCR/ABL mutant cells did exhibit favorable bone marrow engraftment compared to control cells. These data suggest that BCR/ABL expression alone is insufficient to induce disease. This model allows for inducible spatial and temporal control of BCR/ABL expression for analysis of early steps in the pathogenesis of BCR/ABL-expressing leukemias.


Assuntos
Transplante de Medula Óssea/métodos , Proteínas de Fusão bcr-abl/biossíntese , Proteínas de Fusão bcr-abl/genética , Alelos , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão bcr-abl/análise , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA