RESUMO
Probiotic bacteria have potential use as immunomodulators but comparative data on their immunological effects are very limited. The aim of this study was to characterize the effect of oral administration of probiotic strains, alone or as mixtures, on systemic and organ-specific immune responses. For this purpose, healthy C57BL/6 mice were perorally administered probiotics for 3 weeks. A total of five common probiotic strains, Lactobacillus rhamnosus species GG (LGG) and LC705, Bifidobacterium breve 99 (Bb99), Propionibacterium freudenreichii Shermanii JS (PJS), and Escherichia coli Nissle 1917 (EcN), and two of their mixtures, were tested. Livers, spleens, and blood were collected for investigation. A number of five treatments increased the abundance of the natural killer (NK) cells. Bb99 had the most prominent effect on hepatic NK cells (20.0 ± 1.8%). LGG (liver: 5.8 ± 1.0%; spleen: 1.6 ± 0.4%), Bb99 (liver: 13.9 ± 4.3%; spleen: 10.3 ± 3.7%), and EcN (liver: 8.5 ± 3.2%; spleen: 1.0 ± 0.2%) increased the percentage of both the hepatic and splenic T-helper 17 cells. Moreover, LGG (85.5 ± 3.0%) and EcN (89.6 ± 1.2%) increased the percentage of splenic regulatory T-cells. The tested mixtures of the probiotics had different immunological effects from their individual components on cell-mediated responses and cytokine production. In conclusion, our results confirm that the immunomodulatory potential of the probiotics is strain- and organ/tissue-specific, and the effects of probiotic mixtures cannot be predicted based on their single constituents.
RESUMO
Ecology studies showed that esophageal and gastric cancers are directly correlated with the consumption of processed foods. The carcinogenicity of traditional Chinese fermented foods such as douchi (fermented black beans or fermented black soybeans) is due to the presence of carcinogenic N-nitroso compounds, which are derived from biogenic amines. Among the various biogenic amines that can act as precursors of N-nitroso compounds, histamine and tyramine are considered to be the most toxic and are of public health concern when present in food. We have examined some douchi products on the market, and significant amounts of histamine and tyramine were found. The use of fermentation starters generated by subculturing fermented products with unknown microbiota would induce the risk of biogenic amines. As the microbiota used in fermentation is a crucial factor in determining the biogenic amines of fermented food, it is hypothesized that the possible harmful effects of douchi can be minimized through the use of fermentation starters composed of probiotic bacteria. This is the first study to investigate the potential of using probiotic bacteria in manufacturing douchi. Lactobacillus rhamnosus GG (LGG), Lactobacillus casei Shirota (LcS) and Escherichia coli Nissle 1917 (EcN) were used to ferment black beans in this study, and no tyramine was detected in black bean samples incubated with these three strains anaerobically at 37°C or 20°C. The starter culture strains, temperature and presence of oxygen during the incubation period were found to be critical to the generation of biogenic amines. The findings of this study can provide evidence-based insights and warrant further investigations on the potential of reducing the harmful compounds in food fermented with probiotic bacteria as well as the sensory evaluation of douchi fermented with probiotic bacteria.
Assuntos
Bactérias/metabolismo , Aminas Biogênicas/análise , Fermentação , Probióticos/metabolismo , Alimentos de Soja/análise , Alimentos de Soja/microbiologiaRESUMO
Given that Chinese materia medica (CMM) is expensive and rare, people take tremendous risk to adulterate and falsify Cordyceps sinensis with counterfeit species with similar morphological features. It is thus essential to develop new methods to identify the authenticity of Cordyceps sinensis. It is hypothesized in this study that Cordyceps sinensis possesses certain protein biomarkers distinct from its counterfeits, which can be identified by proteomic technologies for authentication purposes. This is the first study that aims to optimize the conditions for extracting proteins from Cordyceps sinensis, a hybrid of fungal-animal CMM, and to compare the two-dimensional gel electrophoresis (2-DE) profiles between different Cordyceps species. Two different protein extraction buffer systems, namely, phenol/sodium dodecyl sulfate (SDS) buffer or lysis buffer, were evaluated, where the preparation using lysis buffer yielded better protein content. The results also showed that extraction with lysis buffer without pre- or post-washing of samples was the most effective protocol, with over 220% of protein yield and 819 protein spots detected on a 2-DE gel. Moreover, the results demonstrated that Cordyceps sinensis possesses protein biomarkers distinct from its counterfeits, and these biomarkers are not source- or origin-dependent, strongly supporting the feasibility of using identified biomarkers as indicators for authentication of Cordyceps species. The findings of this study warrant further investigations on the structural identification of protein biomarkers of Cordyceps species.
Assuntos
Cordyceps/classificação , Proteínas Fúngicas/análise , Proteômica/métodos , Biomarcadores/análise , Cordyceps/isolamento & purificação , Cordyceps/metabolismo , Contaminação de Medicamentos , Eletroforese em Gel Bidimensional , Medicina Tradicional Chinesa/normasRESUMO
Lactobacillus rhamnosus GG (LGG) cells have been shown to promote type-1 immune responsiveness; however knowledge of immunomodulation of soluble factors secreted by LGG is limited. This is the first study to investigate whether LGG soluble factors promote a comparable immune responsiveness as the bacterial cells. Both treatments - LGG conditioned medium with (CM + LGG) or without (CM) LGG cells, in this study increased expression of several toll-like receptors (TLRs) in all studied cell types and antigen presentation-associated receptor HLA-DR in macrophages and "intermediate" monocytes; but decreased that of activation markers on monocytes and macrophages and production of IL-10, IL-12 and TNFα in macrophages. In co-culture with mononuclear cells, CM increased Th1-type cytokine profile but not as pronounced as CM + LGG. This study suggests that LGG soluble factors exert similar immunomodulatory effects as the intact cells, but cells may be required for optimal type-1 immune responsiveness polarizing capacity of this probiotic strain.
Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Fatores Biológicos/farmacologia , Imunomodulação , Lacticaseibacillus rhamnosus/química , Células Apresentadoras de Antígenos/imunologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Receptores Toll-Like/metabolismoRESUMO
Immunomodulation has been shown to be one of the major functions of probiotic bacteria. This review is presented to provide detailed information on the immunomodulatory properties of probiotics in various animal models and clinical practices. Probiotics can regulate helper T (Th) responses and release of cytokines in a strain-specific manner. For example, Lactobacillus rhamnosus GG can induce beneficial Th1 immunomodulatory effect in infants with cow's milk allergy and relieve intestinal inflammation in atopic children by promoting IL-10 generation. Mechanism of action of probiotics on antigen-presenting cells at gastrointestinal tract is also postulated in this review. Probiotic bacterial cells and their soluble factors may activate dendritic cells, macrophages, and to certain extent monocytes via toll-like-receptor recognition and may further provoke specific Th responses. They are speculated to elicit immunomodulatory effects on intestinal and systemic immunities.
Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunidade Humoral , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Lactobacillus/imunologia , Microbiota/imunologia , Probióticos , Animais , Células Apresentadoras de Antígenos/microbiologia , Humanos , ImunomodulaçãoRESUMO
Diarrhetic shellfish poisoning (DSP) is a gastrointestinal disorder caused by the consumption of seafood contaminated with okadaic acid (OA) and dinophysistoxins (DTXs). OA and DTXs are potent inhibitors of protein phosphatases 2A, 1B, and 2B, which may promote cancer in the human digestive system. Their expression in dinoflagellates is strongly affected by nutritional and environmental factors. Studies have indicated that the level of these biotoxins is inversely associated with the growth of dinoflagellates at low concentrations of nitrogen or phosphorus, or at extreme temperature. However, the presence of leucine or glycerophosphate enhances both growth and cellular toxin level. Moreover, the presence of ammonia and incubation in continuous darkness do not favor the toxin production. Currently, studies on the mechanism of this biotoxin production are scant. Full genome sequencing of dinoflagellates is challenging because of the massive genomic size; however, current advanced molecular and omics technologies may provide valuable insight into the biotoxin production mechanism and novel research perspectives on microalgae. This review presents a comprehensive analysis on the effects of various nutritional and physical factors on the OA and DTX production in the DSP toxin-producing Prorocentrum spp. Moreover, the applications of the current molecular technologies in the study on the mechanism of DSP toxin production are discussed.