Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genet Mol Biol ; 42(1): 139-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730526

RESUMO

We report on the nearly complete genome sequence of Clostridium beijerinckii strain Br21, formerly isolated from a sugarcarne vinasse wastewater treatment plant. The resulting genome is ca. 5.9 Mbp in length and resembles the size of previously published C. beijerinckii genomes. We annotated the genome sequence and predicted a total of 5323 genes. Strain Br21 has a genetic toolkit that allows it to exploit diverse sugars that are often found after lignocellulosic biomass pretreatment to yield products of commercial interest. Besides the whole set of genes encoding for enzymes underlying hydrogen production, the genome of the new strain includes genes that enable carbon sources conversion into butanol, ethanol, acetic acid, butyric acid, and the chemical block 1,3-propanediol, which is used to obtain polymers. Moreover, the genome of strain Br21 has a higher number of ORFs with predicted beta-glucosidase activity as compared to other C. beijerinckii strains described in the KEGG database. These characteristics make C. beijerinckii strain Br21 a remarkable candidate for direct use in biotechnological processes and attest that it is a potential biocatalyst supplier.

2.
Bioresour Technol ; 329: 124929, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706176

RESUMO

Sugarcane straw (SCS) was pretreated with dilute sulfuric acid assisted by microwave to magnify fermentable sugars and to minimize the concentration of inhibitors in the hydrolysates. The optimum conditions for maximum recovery of sugars were 162 °C and 0.6% (w/v) H2SO4. The low level of inhibitors, such as acetate (2.9 g/L) and total phenolics (1.4 g/L), in the SCS slurry from the pretreatment stage allowed the enzymatic hydrolysis and fermentation steps to occur without detoxification. Besides consuming the total sugar content (31.0 g/L), Clostridium beijerinckii Br21 was able to use acetate from the SCS hydrolysate, to give butyric acid at high conversion factor (0.49 g of butyric acid /g of sugar). The optimized pretreatment conditions spared acid, time, and the detoxification stage, making bio-butyric acid production from SCS extremely attractive.


Assuntos
Clostridium beijerinckii , Saccharum , Ácido Butírico , Fermentação , Hidrólise , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA