Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zootaxa ; 3765: 249-68, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24870898

RESUMO

Potamotrygon limai, sp. nov., is described from the Jamari River, upper Madeira River system (Amazon basin), state of Rondônia, Brazil. This new species differs from congeners by presenting unique polygonal or concentric patterns formed by small whitish spots better defined over the posterior disc and tail-base regions. Potamotrygon limai, sp. nov., can be further distinguished from congeners in the same basin by other characters in combination, such as two to three rows of midtail spines converging to a single irregular row at level of caudal sting origin, proportions of head, tail and disc, patterns of dermal denticles on rostral, cranial and tail regions, among other features discussed herein. Potamotrygon limai, sp. nov., is most similar to, and occurs sympatrically with, P. scobina, and is distinguished from it by lacking ocellated spots on disc, by its characteristic polygonal pattern on posterior disc, a comparatively much shorter and broader tail, greater intensity of denticles on disc, more midtail spine rows at tail-base, and other features including size at maturity and meristic characters. Potamotrygon limai, sp. nov., is also distinguished from other species of Potamotrygon occurring in the Amazon region, except P. scobina, by presenting three angular cartilages (vs. two or one). This new species was discovered during a detailed taxonomic and morphological revision of the closely related species P. scobina, and highlights the necessity for thorough and all-embracing taxonomic studies, particularly in groups with pronounced endemism and morphological variability.


Assuntos
Rios , Rajidae/anatomia & histologia , Rajidae/classificação , Animais , Brasil , Demografia , Feminino , Masculino , Rajidae/fisiologia , Especificidade da Espécie
2.
Integr Comp Biol ; 62(2): 406-423, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35675320

RESUMO

Evolutionary transitions between marine and freshwater ecosystems have occurred repeatedly throughout the phylogenetic history of fishes. The theory of ecological opportunity predicts that lineages that colonize species-poor regions will have greater potential for phenotypic diversification than lineages invading species-rich regions. Thus, transitions between marine and freshwaters may promote phenotypic diversification in trans-marine/freshwater fish clades. We used phylogenetic comparative methods to analyze body size data in nine major fish clades that have crossed the marine/freshwater boundary. We explored how habitat transitions, ecological opportunity, and community interactions influenced patterns of phenotypic diversity. Our analyses indicated that transitions between marine and freshwater habitats did not drive body size evolution, and there are few differences in body size between marine and freshwater lineages. We found that body size disparity in freshwater lineages is not correlated with the number of independent transitions to freshwaters. We found a positive correlation between body size disparity and overall species richness of a given area, and a negative correlation between body size disparity and diversity of closely related species. Our results indicate that the diversity of incumbent freshwater species does not restrict phenotypic diversification, but the diversity of closely related taxa can limit body size diversification. Ecological opportunity arising from colonization of novel habitats does not seem to have a major effect in the trajectory of body size evolution in trans-marine/freshwater clades. Moreover, competition with closely related taxa in freshwaters has a greater effect than competition with distantly related incumbent species.


Assuntos
Ecossistema , Água Doce , Animais , Peixes/genética , Filogenia
3.
J Morphol ; 277(2): 252-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26592726

RESUMO

The gross brain morphology, brain proportions, and position of cranial nerves in all four genera (Potamotrygon, Plesiotrygon, Paratrygon, and Heliotrygon) and 11 of the species of the Neotropical stingray family Potamotrygonidae were studied to provide new characters that may have a bearing on internal potamotrygonid systematics. The brain was also studied in four other stingray (Myliobatiformes) genera (Hexatrygon, Taeniura, Dasyatis, and Gymnura) to provide a more inclusive phylogenetic context for the interpretation of features of the brain in potamotrygonids. Our results indicate, based on neuroanatomical characters, that the genera Paratrygon and Heliotrygon are sister groups, as are the genera Potamotrygon and Plesiotrygon, agreeing with previous morphological and molecular phylogenetic studies. Both groups of genera share distinct conditions of the olfactory tracts, telencephalon and its central nuclei, hypophysis and infundibulum, morphology and orientation of the metencephalic corpus cerebelli, orientation of the glossopharyngeal nerve, and overall encephalic proportions. The corpus cerebelli of Paratrygon and Heliotrygon is interpreted as being more similar to the general batoid condition and, given their phylogenetic position highly nested within stingrays, is considered secondarily derived, not plesiomorphically retained. Our observations of the corpus cerebelli of stingrays, including Hexatrygon, corroborate that the general stingray pattern previously advanced by Northcutt is derived among batoids. The morphology of the brain is shown to be a useful source of phylogenetically informative characters at lower hierarchical levels, such as between genera and species, and thus, has significant potential in phylogenetic studies of elasmobranchs.


Assuntos
Encéfalo/anatomia & histologia , Filogenia , Rajidae/anatomia & histologia , Animais , Rajidae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA