Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(2): 177-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315267

RESUMO

Short-chain perfluoroalkyl carboxylic acids (PFCAs) have been detected in the environment globally. The presence and persistence of these compounds in the environment may lead to chronic wildlife exposure. We used northern leopard frog (Rana pipiens) tadpoles to investigate the chronic toxicity and the bioconcentration of two short-chain PFCAs, perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA). We exposed Gosner stage 25 tadpoles to PFBA and PFHxA (as individual chemicals) at nominal concentrations of 0.1, 1, 10, 100, and 1000 µg/L for 43-46 days. Tadpoles exposed to 0.1 to 100 µg/L of PFBA and PFHxA had significantly higher mean snout-to-vent lengths, mean masses, and scaled mass indexes than control tadpoles. These results indicate that exposure to short-chain PFCAs influences tadpole growth. Further investigation into the mechanism(s) causing the observed changes in tadpole growth is warranted. We observed a significantly higher proportion of males in the PFBA 1 µg/L treatment group, however further histological analyses are required to confirm visual sex identification before making concrete conclusions on the effects of PFCAs on amphibian sex ratios. PFBA concentrations in tissues were higher than PFHxA concentrations; a pattern that contrasts with previously published studies using fish, suggesting potential differences between taxa in PFBA and PFHxA bioconcentration. Bioconcentration factors were <10 L/kg wet weight, indicating low bioconcentration potential in tadpoles. Our results suggest that PFBA and PFHxA may have effects at environmentally-relevant concentrations (0.1-10 µg/L) and further investigation is required before these compounds can be deemed a "safe" alternative to their long-chain counterparts.


Assuntos
Caproatos , Ácidos Carboxílicos , Fluorocarbonos , Animais , Masculino , Rana pipiens , Larva , Ácidos Carboxílicos/toxicidade , Animais Selvagens , Fluorocarbonos/toxicidade
2.
Proc Natl Acad Sci U S A ; 116(17): 8425-8430, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30936301

RESUMO

Where available, census data on seabirds often do not extend beyond a few years or decades, challenging our ability to identify drivers of population change and to develop conservation policies. Here, we reconstruct long-term population dynamics of northern common eiders (Somateria mollissima borealis). We analyzed sterols together with stable nitrogen isotopes in dated pond sediment cores to show that eiders underwent broadscale population declines over the 20th century at Canadian subarctic breeding sites. Likely, a rapidly growing Greenland population, combined with relocation of Inuit to larger Arctic communities and associated increases in the availability of firearms and motors during the early to mid-20th century, generated more efficient hunting practices, which in turn reduced the number of adult eiders breeding at Canadian nesting islands. Our paleolimnological approach highlights that current and local monitoring windows for many sensitive seabird species may be inadequate for making key conservation decisions.


Assuntos
Conservação dos Recursos Naturais , Patos , Dinâmica Populacional , Migração Animal , Animais , Regiões Árticas , Biomarcadores/análise , Patos/metabolismo , Patos/fisiologia , Sedimentos Geológicos/química , Groenlândia
3.
J Anim Ecol ; 89(2): 519-529, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622499

RESUMO

Parasites and pathogens (hereafter parasites) commonly challenge organisms, but the extent to which their infections are physiologically stressful to hosts remains unclear. Importantly, vertebrate hormones, glucocorticoids (GCs), have been reported to increase, decrease or show no alterations stemming from infections, challenging the generality of parasite-associated GC responses and motivating a search for important moderator variables. We undertook the first meta-analysis of changes in vertebrate GCs following experimental infection with parasites, extracting 146 effect sizes from 42 studies involving 32 host and 32 parasite species to test for general patterns of GC following infection, as well as the influence of moderators. Overall, infection increased GCs relative to preliminary or control levels when the single largest effect sizes from repeated measures studies were examined, suggesting that parasites of vertebrate hosts can be thought of generally as physiological stressors by elevating GCs. When all effect sizes were included along with the moderator of sampling time post-infection (tPI), parasite infection still had a positive effect on host GCs. However, the strength of that effect did not relate consistently to tPI, illustrating temporal differences in GC changes during the course of infection among parasite taxa (e.g. arthropod vs. bacterial infections). Other moderator variables examined did not influence GC responses. Studies broadening the range of host and parasite taxa, and sampling during critical time windows, would aid in our understanding of variation in the host stress response and its consequences for fitness of both vertebrate hosts and their parasites.


Assuntos
Parasitos , Doenças Parasitárias , Animais , Glucocorticoides , Interações Hospedeiro-Parasita , Vertebrados
4.
J Anim Ecol ; 89(6): 1365-1374, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32124439

RESUMO

To understand the diversity and strength of predation in natural communities, researchers must quantify the total amount of prey species in the diet of predators. Metabarcoding approaches have allowed widespread characterization of predator diets with high taxonomic resolution. To determine the wider impacts of predators, researchers should combine DNA techniques with estimates of population size of predators using mark-release-recapture (MRR) methods, and with accurate metrics of food consumption by individuals. Herein, we estimate the scale of predation exerted by four damselfly species on diverse prey taxa within a well-defined 12-ha study area, resolving the prey species of individual damselflies, to what extent the diets of predatory species overlap, and which fraction of the main prey populations are consumed. We identify the taxonomic composition of diets using DNA metabarcoding and quantify damselfly population sizes by MRR. We also use predator-specific estimates of consumption rates, and independent data on prey emergence rates to estimate the collective predation pressure summed over all prey taxa and specific to their main prey (non-biting midges or chironomids) of the four damselfly species. The four damselfly species collectively consumed a prey mass equivalent to roughly 870 (95% CL 410-1,800) g, over 2 months. Each individual consumed 29%-66% (95% CL 9.4-123) of its body weight during its relatively short life span (2.1-4.7 days; 95% CL 0.74-7.9) in the focal population. This predation pressure was widely distributed across the local invertebrate prey community, including 4 classes, 19 orders and c. 140 genera. Different predator species showed extensive overlap in diets, with an average of 30% of prey shared by at least two predator species. Of the available prey individuals in the widely consumed family Chironomidae, only a relatively small proportion (0.76%; 95% CL 0.35%-1.61%) were consumed. Our synthesis of population sizes, per-capita consumption rates and taxonomic distribution of diets identifies damselflies as a comparatively minor predator group of aerial insects. As the next step, we should add estimates of predation by larger odonate species, and experimental removal of odonates, thereby establishing the full impact of odonate predation on prey communities.


Assuntos
Chironomidae , Odonatos , Animais , Cadeia Alimentar , Insetos , Invertebrados , Comportamento Predatório
5.
J Appl Toxicol ; 40(4): 483-492, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31736102

RESUMO

Carrier solvents are used frequently in toxicity testing to assist hydrophobic chemicals into solution, but such solvents may have toxic effects on test subjects. Amphibians are model organisms in toxicity studies; however, little is known about the direct effects of solvents on native amphibians. Following modifications to standardized guidelines for native species, we used acute 96-hour exposures to assess the direct effects of three common solvents on survival, differences in morphology and occurrence of abnormalities of northern leopard frog larvae (Lithobates pipiens). The solvents, dimethyl sulfoxide (DMSO), ethanol (ETOH) and acetone (ACE) were used at nominal concentrations ranging from 1 to 100 µL/L. We also conducted a 30-day exposure to assess the direct chronic effects of DMSO at 1 and 5 µL/L, on larval growth, development and sex differentiation, but found no effects. Acute exposure to solvents also had no effect on the survival of larvae, but we found significant abnormalities in tadpoles acutely exposed to 100 µL/L ACE. Acute exposure to DMSO and ETOH had further concentration-dependent effects on larval morphological traits. Our study suggests that DMSO and ETOH at ≤20 µL/L may be used as solvents in amphibian ecotoxicological studies, but ACE should be limited to ≤50 µL/L in ecotoxicity studies and perhaps much less (≤10 µL/L) in studies with other amphibians, based on a review of existing literature. We emphasize pilot studies when using solvents on acute and chronic ecotoxicity tests, using native amphibians.


Assuntos
Acetona/toxicidade , Dimetil Sulfóxido/toxicidade , Ecotoxicologia , Embrião não Mamífero/efeitos dos fármacos , Etanol/toxicidade , Rana pipiens/embriologia , Solventes/toxicidade , Testes de Toxicidade , Animais , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Masculino , Medição de Risco , Diferenciação Sexual/efeitos dos fármacos , Fatores de Tempo
6.
Parasitol Res ; 119(9): 2917-2925, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32734308

RESUMO

Trematode-induced castration of snails is widespread and can lead to other life history changes of snails such as changes in trajectories of size and growth or survival. The changes produced likely depend on whether the parasite or host controls allocation of host resources remaining after partial or complete cessation of host current reproduction by castrating trematodes. Documenting host life history changes, like changes in host size in response to castration, is a first step in assessing whether these changes are beneficial to the parasite (increasing transmission success) or to the host (outliving the infection) or to neither. Herein, we test for differences in size and survival among individuals of two snail species in relation to infection by Echinostoma spp. trematodes. Active shedding of Echinostoma spp. was associated with castration of all Stagnicola elodes snails from a site in Eastern Ontario. Snails actively shedding cercariae were not different in size from non-shedding, egg-laying snails but had a higher mortality than egg-laying snails. Active shedding of Echinostoma spp. cercariae was also associated with castration of nearly all Helisoma trivolvis monitored, from a site in Southwestern Ontario. Actively shedding, non-laying H. trivolvis hosts were smaller on average than non-shedding egg-laying hosts, but both non-laying and egg-laying snails survived equally well. We discuss these results in light of what is known about effects of castration on snail hosts in terms of growth and survival for these and other trematode species and speculate on whether changes in size or survival benefits parasite or host.


Assuntos
Castração , Cercárias/crescimento & desenvolvimento , Echinostoma/crescimento & desenvolvimento , Lymnaea/parasitologia , Oviposição/fisiologia , Animais , Alimentos , Água Doce , Interações Hospedeiro-Parasita , Ontário , Reprodução
7.
Parasitol Res ; 117(12): 3909-3915, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30284616

RESUMO

Studies on parasite-mediated selection often focus on single parasite taxa infecting single species of hosts. However, host populations experience infections by multiple parasite taxa simultaneously; coinfection is expected to influence how host- and/or parasite-related factors affect host exposure and susceptibility to various parasites, and the resulting patterns of infection. We sampled adult dragonflies from a population of Leucorrhinia intacta (Hagen) in eastern Ontario, Canada. Dragonflies were exposed to parasitism by both water mites (Arrenuridae) and gregarines (Eugregarinidae). We tested for covariation between these ecto- and endoparasites, while considering potential sex and age biases in host sampling and patterns of infection. Mite parasitism differed dramatically between host sexes: nearly all collected males were parasitized, whereas only half of females were infested. This was likely due to differences in age distributions between sexes in sampled dragonflies. Water mite and gregarine parasitism showed strong, negative covariation, and coinfection occurred far less often than expected by chance, although these patterns were restricted to samples of females which, unlike male samples, likely included many old and young dragonflies. We report the first observation of negative covariation between internal and external parasite taxa in an anisopteran host and suggest this relationship between water mites and gregarines may be more widespread among Odonata and perhaps other insects than previously surmised. We advance hypotheses based on host age-parasitism relationships as well as variable parasite-mediated selection to help explain the sex specificity of observed coinfection patterns in our samples.


Assuntos
Apicomplexa/patogenicidade , Interações Hospedeiro-Parasita/fisiologia , Ácaros/patogenicidade , Odonatos/parasitologia , Animais , Feminino , Masculino , Infestações por Ácaros , Ontário , Água
8.
Am Nat ; 187(2): 225-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26807749

RESUMO

The causes and consequences of aggregation among conspecifics have received much attention. For infecting macroparasites, causes include variation among hosts in susceptibility and whether infective stages are aggregated in the environment. Here, we link these two phenomena and explore whether aggregation of infective stages in the environment is adaptive to parasites encountering host condition-linked defenses and what effect such aggregations have for parasite-host interactions. Using simulation models, we show that parasite fitness is increased by aggregates attacking a host, particularly when investment into defenses is high. The fitness benefit of aggregation remains despite inclusion of factors that should curb the benefits of aggregation, namely, mortality of low-condition hosts (those hosts expected to be most susceptible to parasitism) and costs of high coinfection. For sample sizes common in studies, aggregation of infective stages reduces the likelihood of detecting host condition-parasitism relations, even when host condition is the only other factor in models affecting parasitism. Thus, it is not surprising that the expected inverse relations between host condition and parasitism, commonly a premise in studies of parasite-host interactions, are inconsistently found. An understanding of how parasites encounter hosts is thus needed for developing theory for parasite-host ecological and evolutionary interactions.


Assuntos
Adaptação Fisiológica , Aptidão Genética , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Animais , Modelos Biológicos , Parasitos/genética
9.
J Anim Ecol ; 85(6): 1481-1490, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27548394

RESUMO

Infectious diseases have the potential to spread rapidly and cause high mortality within populations of immunologically naïve hosts. The recent appearance of avian cholera, a highly virulent disease of birds caused by the bacterium Pasteurella multocida, at remote Arctic seabird colonies is an emerging conservation concern. Determining disease risk to population viability requires a quantitative understanding of transmission potential and the factors that regulate epidemic persistence. Estimates of the basic (R0 ) and real-time (Rt ) reproductive number are critical in this regard - enumerating the number of secondary infections caused by each primary infection in a newly invaded host population and the decline in transmission rate as susceptible individuals are removed via mortality or immunized recovery. Here, we use data collected at a closely monitored common eider (Somateria mollissima) breeding colony located in the Canadian Arctic to examine transmission and host population dynamics. Specifically, we infer epidemic curves from daily mortality observations and use a likelihood-based procedure to estimate changes in the reproductive number over a series of annual outbreaks. These data are interpreted in relation to concurrent changes in host numbers to assess local extinction risk. Consistent with expectations for a novel pathogen invasion, case incidence increased exponentially during the initial wave of exposure (R0  = 2·5; generation time = 6·5 days ± 1·1 SD). Disease conditions gradually abated, but only after several years of smouldering infection (Rt  ≈ 1). In total, 6194 eider deaths were recorded during outbreaks spanning eight consecutive breeding seasons. Breeding pair abundance declined by 56% from the pre-outbreak peak; however, a robust population of >4000 pairs remained intact upon epidemic fade-out. Overall, outbreak patterns were consistent with herd immunity acting as a mitigating factor governing in the extent and duration of mortality. Disease mortality is frequently modelled as a form of stochastic catastrophe in wildlife population assessments, whereas our approach gives shape to the functional response between transmission and host population dynamics. We conclude that increased emphasis on integrating epidemiological and population processes is essential to predicting the conservation impact of emerging infectious diseases in wildlife.


Assuntos
Doenças das Aves/mortalidade , Doenças das Aves/transmissão , Surtos de Doenças/veterinária , Patos , Infecções por Pasteurella/veterinária , Animais , Regiões Árticas/epidemiologia , Doenças das Aves/microbiologia , Feminino , Funções Verossimilhança , Masculino , Nunavut/epidemiologia , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/mortalidade , Infecções por Pasteurella/transmissão , Pasteurella multocida/isolamento & purificação
10.
Proc Biol Sci ; 282(1800): 20142085, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25540279

RESUMO

For birds, unpredictable environments during the energetically stressful times of moulting and breeding are expected to have negative fitness effects. Detecting those effects however, might be difficult if individuals modulate their physiology and/or behaviours in ways to minimize short-term fitness costs. Corticosterone in feathers (CORTf) is thought to provide information on total baseline and stress-induced CORT levels at moulting and is an integrated measure of hypothalamic-pituitary-adrenal activity during the time feathers are grown. We predicted that CORTf levels in northern common eider females would relate to subsequent body condition, reproductive success and survival, in a population of eiders nesting in the eastern Canadian Arctic during a capricious period marked by annual avian cholera outbreaks. We collected CORTf data from feathers grown during previous moult in autumn and data on phenology of subsequent reproduction and survival for 242 eider females over 5 years. Using path analyses, we detected a direct relationship between CORTf and arrival date and body condition the following year. CORTf also had negative indirect relationships with both eider reproductive success and survival of eiders during an avian cholera outbreak. This indirect effect was dramatic with a reduction of approximately 30% in subsequent survival of eiders during an avian cholera outbreak when mean CORTf increased by 1 standard deviation. This study highlights the importance of events or processes occurring during moult on subsequent expression of life-history traits and relation to individual fitness, and shows that information from non-destructive sampling of individuals can track carry-over effects across seasons.


Assuntos
Anseriformes/fisiologia , Corticosterona/análise , Plumas/química , Muda/fisiologia , Reprodução/fisiologia , Animais , Anseriformes/microbiologia , Regiões Árticas , Doenças das Aves/microbiologia , Doenças das Aves/mortalidade , Doenças das Aves/fisiopatologia , Canadá , Feminino , Infecções por Pasteurella/mortalidade , Infecções por Pasteurella/fisiopatologia , Infecções por Pasteurella/veterinária , Pasteurella multocida , Estações do Ano , Estresse Fisiológico
11.
Parasitology ; 142(13): 1647-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26399637

RESUMO

Parasites are detrimental to host fitness and therefore should strongly select for host defence mechanisms. Yet, hosts vary considerably in their observed parasite loads. One notable source of inter-individual variation in parasitism is host sex. Such variation could be caused by the immunomodulatory effects of gonadal steroids. Here we assess the influence of gonadal steroids on the ability of guppies (Poecilia reticulata) to defend themselves against a common and deleterious parasite (Gyrodactylus turnbulli). Adult male guppies underwent 31 days of artificial demasculinization with the androgen receptor-antagonist flutamide, or feminization with a combination of flutamide and the synthetic oestrogen 17 ß-estradiol, and their parasite loads were compared over time to untreated males and females. Both demasculinized and feminized male guppies had lower G. turnbulli loads than the untreated males and females, but this effect appeared to be mainly the result of demasculinization, with feminization having no additional measurable effect. Furthermore, demasculinized males, feminized males and untreated females all suffered lower Gyrodactylus-induced mortality than untreated males. Together, these results suggest that androgens reduce the ability of guppies to control parasite loads, and modulate resistance to and survival from infection. We discuss the relevance of these findings for understanding constraints on the evolution of resistance in guppies and other vertebrates.


Assuntos
Doenças dos Peixes/parasitologia , Platelmintos/imunologia , Poecilia/parasitologia , Infecções por Trematódeos/veterinária , Antagonistas de Androgênios/administração & dosagem , Antagonistas de Androgênios/farmacologia , Animais , Resistência à Doença/fisiologia , Quimioterapia Combinada , Estradiol/farmacologia , Feminino , Doenças dos Peixes/imunologia , Flutamida/administração & dosagem , Flutamida/farmacologia , Masculino , Carga Parasitária/veterinária , Distribuição Aleatória , Fatores Sexuais , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/parasitologia
12.
Proc Biol Sci ; 281(1779): 20133128, 2014 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-24500172

RESUMO

Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears' ability to meet their energetic demands. In this study, we examined polar bears' use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010-2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator-prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.


Assuntos
Aves/fisiologia , Mudança Climática , Camada de Gelo , Comportamento Predatório , Estações do Ano , Ursidae/fisiologia , Animais , Regiões Árticas , Canadá , Cadeia Alimentar
13.
Oecologia ; 175(1): 315-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24562470

RESUMO

Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This 'release' from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate "pre-invasion" reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.


Assuntos
Dreissena , Cadeia Alimentar , Espécies Introduzidas , Perciformes/fisiologia , Comportamento Predatório , Animais , Isótopos de Carbono/análise , Dieta , Conteúdo Gastrointestinal , Great Lakes Region , Lagos , Isótopos de Nitrogênio/análise , Estado Nutricional , Parasitos , Perciformes/parasitologia
14.
Environ Sci Pollut Res Int ; 31(13): 20586-20600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374506

RESUMO

We investigated trophic transfer of cadmium (Cd) through an Arctic marine food web in Hudson Bay and compared it with mercury (Hg), a metal known to strongly biomagnify. We evaluated blue mussel, sea urchin, common eider, sculpin, Arctic cod, and ringed seal for the influence of dietary and biological variables on variation in Cd and Hg concentrations. Age and size influenced metal concentrations among individuals within a vertebrate species. Consumer carbon and sulfur isotope values were correlated with their Cd and Hg concentrations, indicating habitat-specific feeding influenced metal bioaccumulation. Trophic transfer patterns for Cd depended on the vertebrate tissue, with food web biodilution observed for the muscle but not the liver. Liver Cd concentrations were higher in ringed seal and some common eider relative to prey. In contrast, we observed mercury biomagnification for both tissues. Tissue- and species-specific physiology can explain discrepancies of Cd trophic transfer in this Arctic marine food web.


Assuntos
Patos , Mercúrio , Focas Verdadeiras , Poluentes Químicos da Água , Humanos , Animais , Mercúrio/análise , Cadeia Alimentar , Cádmio/análise , Baías , Metais , Regiões Árticas , Canadá , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes
15.
BMC Ecol ; 13: 50, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24351055

RESUMO

BACKGROUND: One of the main challenges in evolutionary parasitology is to determine the factors that explain variation among host species in parasitism. In this study, we addressed whether host phylogeny or ecology was important in determining host species use by water mites. Parasitism (prevalence and intensity) by Arrenurus water mites was examined in relation to geographic distribution of host damselflies from sibling species pairs. In addition, the likelihood of putative mite species parasitizing both species of a host species pair was explored. RESULTS: A total of 1162 damselflies were examined for water mites across four sites in Southeastern Ontario. These damselflies represent ten species (five closely related host species pairs) in the Coenagrionidae. Only two of the five species pairs showed near significant or significant differences in prevalence of infection by mites. In one of those species comparisons, it was the less widespread host that had higher water mite prevalence and in the other species comparison, the less widespread host species had lower water mite prevalence. Only one of the five pairs showed a significant difference in intensity of infection; intensity was higher in the species with a smaller geographic distribution. Based on the COI barcode, there were nine water mite clades (OTU) infecting these ten host species. Three Arrenurus OTUs may be host monospecific, four OTUs were specific to a given host species pair, and two OTUs infected at least three host species. Host species in each species pairs tend to share at least one of the Arrenurus OTU. No striking differences in mite species diversity were found among species in any species pair. Finally, the Arrenurus examined in this study appear to be ecological specialists, restricted to a particular type of habitat, parasitizing few to many of the host species present in that site or habitat. CONCLUSIONS: Although differences in levels of parasitism by water mites exist for some closely related hosts species, no such differences were found between other related host species. Differences in geographic range of related host species does not reliably explain differential levels of parasitism by water mites.


Assuntos
Interações Hospedeiro-Parasita , Ácaros/fisiologia , Odonatos/parasitologia , Simpatria , Animais , Evolução Biológica , Código de Barras de DNA Taxonômico , Geografia , Ácaros/classificação , Dados de Sequência Molecular , Ontário
16.
Mol Phylogenet Evol ; 65(1): 276-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22732596

RESUMO

Uroobovella (Mesostigmata: Uropodoidea: Urodinychidae) species are among the most common mites associated with carrion-feeding Nicrophorus (Silphidae) beetles. Previous taxonomic understanding suggests that a single host generalist, U. nova, disperses and lives with Nicrophorus species worldwide (reported from at least seven host species). Using morphometrics and morphological characteristics, as well as partial cytochrome oxidase I (COI) and the entire internal transcribed spacer 2 (ITS2) markers, we tested whether this apparent generalist is truly a generalist or rather a complex of cryptic species with narrower host ranges. Based on deutonymph mites collected from 14 host species across six countries and 17 provinces or states, we show that U. nova represents at least five morphologically similar species with relatively restricted host ranges. Except for one species which yielded no molecular data (but did exhibit morphological differences), both molecular and morphological datasets were congruent in delimiting species boundaries. Moreover, comparing the mite phylogeny with the known ecology and phylogenetic relationships of their host species suggests that these mites are coevolving with their silphid hosts rather than tracking ecologically similar species.


Assuntos
Besouros/parasitologia , Especificidade de Hospedeiro , Ácaros/classificação , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ácaros/genética , Modelos Genéticos , Análise de Sequência de DNA
17.
Environ Sci Technol ; 46(13): 7094-101, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22668132

RESUMO

The sex of a bird can, in principle, affect exposure and accumulation of mercury. One conventional explanation for sex differences in mercury burden suggests female birds should have lower concentrations than conspecific males, because breeding females can depurate methylmercury to their eggs. However, sex differences in body burden of mercury among birds are not consistent. We used meta-analysis to synthesize 123 male-female comparisons of mercury burden from 50 studies. For breeding birds, males had higher concentrations of mercury than did females, supporting egg depuration as a mechanism. However, the percentage of female body mass represented by a clutch did not significantly predict the magnitude of the sex difference in mercury contamination, as predicted. Furthermore, whether species were semialtrical or altrical versus semiprecocial or precocial also did not explain sex differences in mercury burden. Foraging guild of a species did explain near significant variation in sex differences in mercury burden where piscivores and invertivores showed significant sex differences, but sex differences were not detected for carnivores, herbivores, insectivores, and omnivores. The magnitude and direction of sexual size dimorphism did not explain variation in sex differences in mercury burden among breeding birds. We reveal targeted research directions on mechanisms for sex differences in mercury and confirm that sex is important to consider for environmental risk assessments based on breeding birds.


Assuntos
Aves/fisiologia , Monitoramento Ambiental , Poluentes Ambientais/análise , Mercúrio/análise , Animais , Tamanho Corporal , Ovos/análise , Poluentes Ambientais/metabolismo , Comportamento Alimentar , Feminino , Masculino , Mercúrio/metabolismo , Fatores Sexuais
18.
Parasitol Res ; 110(1): 245-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21633843

RESUMO

We studied parasitism by gut protozoans (Apicomplexa: Eugregarinidae) in the damselfly, Nehalennia irene (Hagen) (Odonata: Coenagrionidae). We tested whether there was any seasonal pattern, as has been found for other parasites of damselflies and which has implications for selection on emergence and breeding. Using aggregate data from 12 date-by-site comparisons involving five sites, we found that both prevalence and intensity of gregarine parasitism were seasonally unimodal. Parasitism first increased and then declined seasonally after peaking mid-season. This damselfly species has shown seasonal increases in density followed by declines at several sites including a site sampled in this study. Therefore, similar seasonal changes in a directly transmitted parasite were expected and are now confirmed. Other factors that might account for seasonal changes in parasitism by gregarines are either unlikely or can be discounted including sampling of older damselflies mid-season but not late in the season, or sex biases in parasitism and overrepresentation of the more parasitized sex mid-season.


Assuntos
Insetos/parasitologia , Carga Parasitária , Animais , Feminino , Trato Gastrointestinal/parasitologia , Masculino , Estações do Ano
19.
PeerJ ; 10: e13763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36039371

RESUMO

Aggregation of macroparasites among hosts is a near-universal pattern, and has important consequences for the stability of host-parasite associations and the impacts of disease. Identifying which potential drivers are contributing to levels of aggregation observed in parasite-host associations is challenging, particularly for observational studies. We apply beta regressions in a Bayesian framework to determine predictors of aggregation, quantified using Poulin's index of discrepancy (D), for 13 species of parasites infecting Icelandic Rock Ptarmigan (Lagopus muta) collected over 12 years. 1,140 ptarmigan were collected using sampling protocols maximizing consistency of sample sizes and of composition of host ages and sexes represented across years from 2006-2017. Parasite species, taxonomic group (insect, mite, coccidian, or nematode), and whether the parasite was an ecto- or endoparasite were tested as predictors of aggregation, either alone or by modulating an effect of parasite mean abundance on D. Parasite species was an important predictor of aggregation in models. Despite variation in D across samples and years, relatively consistent aggregation was demonstrated for each specific host-parasite association, but not for broader taxonomic groups, after taking sample mean abundance into account. Furthermore, sample mean abundance was consistently and inversely related to aggregation among the nine ectoparasites, however no relationship between mean abundance and aggregation was observed among the four endoparasites. We discuss sources of variation in observed aggregation, sources both statistical and biological in nature, and show that aggregation is predictable, and distinguishable, among infecting species. We propose explanations for observed patterns and call for the review and re-analysis of parasite and other symbiont distributions using beta regression to identify important drivers of aggregation-both broad and association-specific.


Assuntos
Ácaros , Nematoides , Parasitos , Animais , Teorema de Bayes , Interações Hospedeiro-Parasita
20.
Environ Sci Technol ; 45(4): 1213-8, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21244090

RESUMO

Aquatic fish-eating birds can demethylate methylmercury in their livers. In this study, we determined whether a previously documented male bias in mercury concentration in double-crested cormorants ( Phalacrocorax auritus ) was due entirely to the depuration of mercury into eggs or might also in part be related to sex differences in methylmercury demethylation or biliary excretion capability in the liver. We found egg depuration accounted for less than a fifth of the mercury concentration difference between males and females, hence not entirely explaining the sex difference. Females had a significantly steeper slope for the negative relationship between percent methylmercury (i.e., percentage of total mercury that is methylmercury) and total mercury concentration than did males. This suggests that females have a greater capacity to demethylate methylmercury, which might be reducing the amount of methylmercury available for depuration to eggs. We also found a significant negative relationship between methylmercury concentration and liver mass for females only; thus females might also have a greater capability to excrete methylmercury compared to males. Therefore, we conclude that the male bias in mercury concentration might also result from females having a greater capability to excrete mercury compared to males.


Assuntos
Aves/metabolismo , Poluentes Ambientais/farmacocinética , Mercúrio/farmacocinética , Animais , Ovos , Poluentes Ambientais/metabolismo , Feminino , Fígado , Masculino , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/farmacocinética , Óvulo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA