Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 40(1): 153-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-28873257

RESUMO

Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies.

2.
Glob Chang Biol ; 24(1): 143-157, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28892592

RESUMO

Food security and agriculture productivity assessments in sub-Saharan Africa (SSA) require a better understanding of how climate and other drivers influence regional crop yields. In this paper, our objective was to identify the climate signal in the realized yields of maize, sorghum, and groundnut in SSA. We explored the relation between crop yields and scale-compatible climate data for the 1962-2014 period using Random Forest, a diagnostic machine learning technique. We found that improved agricultural technology and country fixed effects are three times more important than climate variables for explaining changes in crop yields in SSA. We also found that increasing temperatures reduced yields for all three crops in the temperature range observed in SSA, while precipitation increased yields up to a level roughly matching crop evapotranspiration. Crop yields exhibited both linear and nonlinear responses to temperature and precipitation, respectively. For maize, technology steadily increased yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by 0.8% (10 kg/ha) per °C. This study demonstrates that although we should expect increases in future crop yields due to improving technology, the potential yields could be progressively reduced due to warmer and drier climates.


Assuntos
Agricultura/métodos , Mudança Climática , Produtos Agrícolas , Abastecimento de Alimentos , África Subsaariana , Clima , Grão Comestível , Humanos , Temperatura
3.
Science ; 295(5552): 113-7, 2002 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-11778044

RESUMO

We derive joint probability density distributions for three key uncertain properties of the climate system, using an optimal fingerprinting approach to compare simulations of an intermediate complexity climate model with three distinct diagnostics of recent climate observations. On the basis of the marginal probability distributions, the 5 to 95% confidence intervals are 1.4 to 7.7 kelvin for climate sensitivity and -0.30 to -0.95 watt per square meter for the net aerosol forcing. The oceanic heat uptake is not well constrained, but ocean temperature observations do help to constrain climate sensitivity. The uncertainty in the net aerosol forcing is much smaller than the uncertainty range for the indirect aerosol forcing alone given in the Intergovernmental Panel on Climate Change Third Assessment Report.

4.
Nature ; 453(7195): 601-2, 2008 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-18509430
5.
PLoS One ; 12(1): e0170052, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081273

RESUMO

The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks.


Assuntos
Mudança Climática , Camada de Gelo , Modelos Teóricos , Regiões Antárticas , Teorema de Bayes
6.
Philos Trans A Math Phys Eng Sci ; 365(1857): 2029-52, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17569655

RESUMO

Two different approaches are described for constraining climate predictions based on observations of past climate change. The first uses large ensembles of simulations from computationally efficient models and the second uses small ensembles from state-of-the-art coupled ocean-atmosphere general circulation models. Each approach is described and the advantages of each are discussed. When compared, the two approaches are shown to give consistent ranges for future temperature changes. The consistency of these results, when obtained using independent techniques, demonstrates that past observed climate changes provide robust constraints on probable future climate changes. Such probabilistic predictions are useful for communities seeking to adapt to future change as well as providing important information for devising strategies for mitigating climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA