Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 56(3): 801-811, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35005810

RESUMO

BACKGROUND: Magnetic resonance feature tracking (MR-FT) is an imaging technique that quantifies both global and regional myocardial strain. Currently, conventional MR-FT provides a superior signal and contrast-to-noise ratio but has a relatively low temporal resolution. A higher temporal resolution MR-FT technique may provide improved results. PURPOSE: To explore the impact of higher temporal resolution on left ventricular (LV) myocardial strain measurements using MR-FT. STUDY TYPE: Prospective. POPULATION: One hundred and fifty-three participants including five healthy subjects and patients with various cardiac diseases referred to MR for cardiac assessment. FIELD STRENGTH: 3 T, balanced steady-state free precession sequence with and without compressed sensing (temporal resolution: 10 msec and 40 msec, respectively). ASSESSMENT: Conventional (40 msec) and higher (10 msec) temporal resolution data were acquired in all subjects during the same scanning session. Global circumferential strain (GCS), global longitudinal strain (GLS), and global radial strain (GRS) as well as peak systolic and diastolic strain rates (SRs) were measured by MR-FT and compared between the two temporal resolutions. We also performed subgroup analyses according to heart rates (HRs) and LV ejection fraction (LVEF). STATISTICAL TESTS: Paired t-test, Wilcoxon signed-rank test, linear regression analyses, Bland-Altman plots. A P value <0.05 was considered to be statistically significant. RESULTS: GCS and GRS were significantly higher in the 10-msec temporal resolution studies compared to the 40-msec temporal resolution studies (GCS: -13.00 ± 6.58% vs. -12.51 ± 5.76%; GRS: 21.97 ± 14.54% vs. 20.62 ± 12.52%). In the subgroup analyses, significantly higher GLS, GCS, and GRS values were obtained in subjects with LVEF ≥50%, and significantly higher GCS and GRS values were obtained in subjects with HRs <70 bpm when assessed with the 10-msec vs. the 40-msec temporal resolutions. All the peak systolic and diastolic SRs were significantly higher in the higher temporal resolution acquisitions. This was also true for all subgroups. DATA CONCLUSIONS: Higher temporal resolution resulted in significantly higher cardiac strain and SR values using MR-FT and could be beneficial, particularly in patients with LVEF ≥50% and HR <70 bpm. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Ventrículos do Coração , Função Ventricular Esquerda , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Volume Sistólico , Função Ventricular Esquerda/fisiologia
2.
Eur Radiol ; 32(2): 1276-1284, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34347156

RESUMO

OBJECTIVES: Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort. METHODS: Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE. RESULTS: Concentric VWE of the proximal intradural ICA was found in 13 (30%) patients, and of the proximal intradural VA in 39 (91%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 %), morphology indicated atherosclerotic lesions in addition to vasa vasorum. CONCLUSIONS: Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis. KEY POINTS: • Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in non-vasculitic elderly people. • Concentric enhancement within the proximal 2 mm of the intradural ICA and within the proximal 13 mm of the intradural VA portions should not be misinterpreted as vasculitis. • Distal of this, VWE is likely related to pathologic conditions, in case of concentric VWE suggestive of vasculitis.


Assuntos
Vasa Vasorum , Vasculite , Idoso , Artérias Cerebrais , Humanos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Vasa Vasorum/diagnóstico por imagem
3.
Scand Cardiovasc J ; 56(1): 266-275, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35836407

RESUMO

Objectives. To evaluate if cine sequences accelerated by compressed sensing (CS) are feasible in clinical routine and yield equivalent cardiac morphology in less time. Design. We evaluated 155 consecutive patients with various cardiac diseases scanned during our clinical routine. LV and RV short axis (SAX) cine images were acquired by conventional and prototype 2-shot CS sequences on a 1.5 T CMR. The 2-shot prototype captures the entire heart over a period of 3 beats making the acquisition potentially even faster. Both scans were performed with identical slice parameters and positions. We compared LV and RV morphology with Bland-Altmann plots and weighted the results in relation to pre-defined tolerance intervals. Subjective and objective image quality was evaluated using a 4-point score and adapted standardized criteria. Scan times were evaluated for each sequence. Results. In total, no acquisitions were lost due to non-diagnostic image quality in the subjective image score. Objective image quality analysis showed no statistically significant differences. The scan time of the CS cines was significantly shorter (p < .001) with mean scan times of 178 ± 36 s compared to 313 ± 65 s for the conventional cine. All cardiac function parameters showed excellent correlation (r 0.978-0.996). Both sequences were considered equivalent for the assessment of LV and RV morphology. Conclusions. The 2-shot CS SAX cines can be used in clinical routine to acquire cardiac morphology in less time compared to the conventional method, with no total loss of acquisitions due to nondiagnostic quality. TRIAL REGISTRATION: ISRCTN12344380. Registered 20 November 2020, retrospectively registered.


Assuntos
Imagem Cinética por Ressonância Magnética , Função Ventricular Direita , Suspensão da Respiração , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Função Ventricular Esquerda
4.
BMC Med Imaging ; 22(1): 64, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35387607

RESUMO

BACKGROUND: To evaluate the utility of high-resolution compressed sensing time-of-fight MR angiography (CS TOF-MRA) for assessing patients with moyamoya disease (MMD) after surgical revascularization, by comparison with computer tomography angiography (CTA). METHODS: Twenty patients with MMD after surgical revascularizations who underwent CS TOF-MRA and CTA were collected. The scan time of CS TOF-MRA was 5 min and 4 s, with a reconstructed resolution of 0.4 × 0.4 × 0.4 mm3. Visualization of superficial temporal artery and middle cerebral artery (STA-MCA) bypass, neovascularization into the brain pial surface and Moyamoya vessels (MMVs) were independently ranked by two neuroradiologists on CS TOF-MRA and CTA, respectively. The patency of anastomosis was assessed as patent or occluded, using digital subtraction angiography and expert's consensus as ground truth. Interobserver agreement was calculated using the weighted kappa statistic. Wilcoxon signed-rank or Chi-square test was performed to investigate diagnostic difference between CS TOF-MRA and CTA. RESULTS: Twenty-two hemispheres from 20 patients were analyzed. The inter-reader agreement for evaluating STA-MCA bypass, neovascularization and anastomosis patency was good to excellent (κCS TOF-MRA, 0.738-1.000; κCTA, 0.743-0.909). The STA-MCA bypass and MMVs were better visualized on CS TOF-MRA than CTA (both P < 0.05). CS TOF-MRA had a higher sensitivity than CTA (94.7% vs. 73.7%) for visualizing anastomoses. Neovascularization was better observed in 13 (59.1%) sides on CS TOF-MRA, in comparison to 7 (31.8%) sides on CTA images (P = 0.005). CONCLUSION: High-resolution CS TOF-MRA outperforms CTA for visualization of STA-MCA bypass, neovascularization and MMVs within a clinically reasonable time in MMD patients after revascularization.


Assuntos
Doença de Moyamoya , Angiografia Digital/métodos , Angiografia por Tomografia Computadorizada , Humanos , Angiografia por Ressonância Magnética/métodos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia
5.
Magn Reson Med ; 85(4): 2174-2187, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107141

RESUMO

PURPOSE: To systematically assess the feasibility and performance of a highly accelerated compressed sensing (CS) 4D flow MRI framework at three different acceleration factors (R) for the quantification of aortic flow dynamics and wall shear stress (WSS) in patients with aortic disease. METHODS: Twenty patients with aortic disease (58 ± 15 y old; 19 M) underwent four 4D flow scans: one conventional (GRAPPA, R = 2) and three CS 4D flows with R = 5.7, 7.7, and 10.2. All scans were acquired with otherwise equivalent imaging parameters on a 1.5T scanner. Peak-systolic velocity (Vmax ), peak flow (Qmax ), and net flow (Qnet ) were quantified at the ascending aorta (AAo), arch, and descending aorta (DAo). WSS was calculated at six regions within the AAo and arch. RESULTS: Mean scan times for the conventional and CS 4D flows with R = 5.7, 7.7, and 10.2 were 9:58 ± 2:58 min, 3:40 ± 1:19 min, 2:50 ± 0:56 min, and 2:05 ± 0:42 min, respectively. Vmax , Qmax , and Qnet were significantly underestimated by all CS protocols (underestimation ≤ -7%, -9%, and -10% by CS, R = 5.7, 7.7, and 10.2, respectively). WSS measurements showed the highest underestimation by all CS protocols (underestimation ≤ -9%, -12%, and -14% by CS, R = 5.7, 7.7, and 10.2). CONCLUSIONS: Highly accelerated aortic CS 4D flow at R = 5.7, 7.7, and 10.2 showed moderate agreement with the conventional 4D flow, despite systematically underestimating various hemodynamic parameters. The shortened scan time may enable the clinical translation of CS 4D flow, although potential hemodynamic underestimation should be considered when interpreting the results.


Assuntos
Aorta , Doenças da Aorta , Aceleração , Doenças da Aorta/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
6.
Magn Reson Med ; 86(2): 663-676, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749026

RESUMO

PURPOSE: To enable all-systolic first-pass rest myocardial perfusion with long saturation times. To investigate the change in perfusion contrast and dark rim artefacts through simulations and surrogate measurements. METHODS: Simulations were employed to investigate optimal saturation time for myocardium-perfusion defect contrast and blood-to-myocardium signal ratios. Two saturation recovery blocks with long/short saturation times (LTS/STS) were employed to image 3 slices at end-systole and diastole. Simultaneous multi-slice balanced steady state free precession imaging and compressed sensing acceleration were combined. The sequence was compared to a 3 slice-by-slice clinical protocol in 10 patients. Quantitative assessment of myocardium-peak pre contrast and blood-to-myocardium signal ratios, as well as qualitative assessment of perceived SNR, image quality, blurring, and dark rim artefacts, were performed. RESULTS: Simulations showed that with a bolus of 0.075 mmol/kg, a LTS of 240-470 ms led to a relative increase in myocardium-perfusion defect contrast of 34% ± 9%-28% ± 27% than a STS = 120 ms, while reducing blood-to-myocardium signal ratio by 18% ± 10%-32% ± 14% at peak myocardium. With a bolus of 0.05 mmol/kg, LTS was 320-570 ms with an increase in myocardium-perfusion defect contrast of 63% ± 13%-62% ± 29%. Across patients, LTS led to an average increase in myocardium-peak pre contrast of 59% (P < .001) at peak myocardium and a lower blood-to-myocardium signal ratio of 47% (P < .001) and 15% (P < .001) at peak blood/myocardium. LTS had improved motion robustness (P = .002), image quality (P < .001), and decreased dark rim artefacts (P = .008) than the clinical protocol. CONCLUSION: All-systolic rest perfusion can be achieved by combining simultaneous multi-slice and compressed sensing acceleration, enabling 3-slice cardiac coverage with reduced motion and dark rim artefacts. Numerical simulations indicate that myocardium-perfusion defect contrast increases at LTS.


Assuntos
Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio , Aceleração , Meios de Contraste , Coração/diagnóstico por imagem , Humanos , Perfusão , Sístole
7.
Eur Radiol ; 31(10): 7219-7230, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33779815

RESUMO

OBJECTIVES: To compare volumetric and functional parameters of the atria derived from highly accelerated compressed sensing (CS)-based cine sequences in comparison to conventional (Conv) cine imaging. METHODS: CS and Conv cine sequences were acquired in 101 subjects (82 healthy volunteers (HV) and 19 patients with heart failure with reduced ejection fraction (HFrEF)) using a 3T MR scanner in this single-center study. Time-volume analysis of the left (LA) and right atria (RA) were performed in both sequences to evaluate atrial volumes and function (total, passive, and active emptying fraction). Inter-sequence and inter- and intra-reader agreement were analyzed using correlation, intraclass correlation (ICC), and Bland-Altman analysis. RESULTS: CS-based cine imaging led to a 69% reduction of acquisition time. There was significant difference in atrial parameters between CS and Conv cine, e.g., LA minimal volume (LAVmin) (Conv 24.0 ml (16.7-32.7), CS 25.7 ml (19.2-35.2), p < 0.0001) or passive emptying fraction (PEF) (Conv 53.9% (46.7-58.4), CS 49.0% (42.0-54.1), p < 0.0001). However, there was high correlation between the techniques, yielding good to excellent ICC (0.76-0.99) and small mean of differences in Bland-Altman analysis (e.g. LAVmin - 2.0 ml, PEF 3.3%). Measurements showed high inter- (ICC > 0.958) and intra-rater (ICC > 0.934) agreement for both techniques. CS-based parameters (PEF AUC = 0.965, LAVmin AUC = 0.864) showed equivalent diagnostic ability compared to Conv cine imaging (PEF AUC = 0.989, LAVmin AUC = 0.859) to differentiate between HV and HFrEF. CONCLUSION: Atrial volumetric and functional evaluation using CS cine imaging is feasible with relevant reduction of acquisition time, therefore strengthening the role of CS in clinical CMR for atrial imaging. KEY POINTS: • Reliable assessment of atrial volumes and function based on compressed sensing cine imaging is feasible. • Compressed sensing reduces scan time and has the potential to overcome obstacles of conventional cine imaging. • No significant differences for subjective image quality, inter- and intra-rater agreement, and ability to differentiate healthy volunteers and heart failure patients were detected between conventional and compressed sensing cine imaging.


Assuntos
Insuficiência Cardíaca , Aceleração , Átrios do Coração/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Reprodutibilidade dos Testes , Volume Sistólico
8.
Eur Radiol ; 31(6): 3951-3961, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33263160

RESUMO

OBJECTIVES: To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. MATERIAL AND METHODS: Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. RESULTS: LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). CONCLUSION: The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. KEY POINTS: • Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times.


Assuntos
Gadolínio , Imageamento Tridimensional , Meios de Contraste , Humanos , Aumento da Imagem , Imageamento por Ressonância Magnética , Água
9.
J Cardiovasc Magn Reson ; 23(1): 10, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618722

RESUMO

BACKGROUND: Feature tracking (FT) has become an established tool for cardiovascular magnetic resonance (CMR)-based strain analysis. Recently, the compressed sensing (CS) technique has been applied to cine CMR, which has drastically reduced its acquisition time. However, the effects of CS imaging on FT strain analysis need to be carefully studied. This study aimed to investigate the use of CS cine CMR for FT strain analysis compared to conventional cine CMR. METHODS: Sixty-five patients with different left ventricular (LV) pathologies underwent both retrospective conventional cine CMR and prospective CS cine CMR using a prototype sequence with the comparable temporal and spatial resolution at 3 T. Eight short-axis cine images covering the entire LV were obtained and used for LV volume assessment and FT strain analysis. Prospective CS cine CMR data over 1.5 heartbeats were acquired to capture the complete end-diastolic data between the first and second heartbeats. LV volume assessment and FT strain analysis were performed using a dedicated software (ci42; Circle Cardiovasacular Imaging, Calgary, Canada), and the global circumferential strain (GCS) and GCS rate were calculated from both cine CMR sequences. RESULTS: There were no significant differences in the GCS (- 17.1% [- 11.7, - 19.5] vs. - 16.1% [- 11.9, - 19.3; p = 0.508) and GCS rate (- 0.8 [- 0.6, - 1.0] vs. - 0.8 [- 0.7, - 1.0]; p = 0.587) obtained using conventional and CS cine CMR. The GCS obtained using both methods showed excellent agreement (y = 0.99x - 0.24; r = 0.95; p < 0.001). The Bland-Altman analysis revealed that the mean difference in the GCS between the conventional and CS cine CMR was 0.1% with limits of agreement between -2.8% and 3.0%. No significant differences were found in all LV volume assessment between both types of cine CMR. CONCLUSION: CS cine CMR could be used for GCS assessment by CMR-FT as well as conventional cine CMR. This finding further enhances the clinical utility of high-speed CS cine CMR imaging.


Assuntos
Cardiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Função Ventricular Esquerda , Remodelação Ventricular , Idoso , Feminino , Cardiopatias/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Estudos Retrospectivos
10.
Neuroradiology ; 63(6): 879-887, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33063222

RESUMO

PURPOSE: Time-of-flight (TOF)-MR angiography (MRA) is an important imaging sequence for the surveillance and analysis of cerebral arteriovenous shunt (AVS), including arteriovenous malformation (AVM) and arteriovenous fistula (AVF). However, this technique has the disadvantage of a relatively long scan time. The aim of this study was to compare diagnostic accuracy between compressed sensing (CS)-TOF and conventional parallel imaging (PI)-TOF-MRA for detecting and characterizing AVS. METHODS: This study was approved by the institutional review board for human studies. Participants comprised 56 patients who underwent both CS-TOF-MRA and PI-TOF-MRA on a 3-T MR unit with or without cerebral AVS between June 2016 and September 2018. Imaging parameters for both sequences were almost identical, except the acceleration factor of 3× for PI-TOF-MRA and 6.5× for CS-TOF-MRA, and the scan time of 5 min 19 s for PI-TOF-MRA and 2 min 26 s for CS-TOF-MRA. Two neuroradiologists assessed the accuracy of AVS detection on each sequence and analyzed AVS angioarchitecture. Concordance between CS-TOF, PI-TOF, and digital subtraction angiography was calculated using unweighted and weighted kappa statistics. RESULTS: Both CS-TOF-MRA and PI-TOF-MRA yielded excellent sensitivity and specificity for detecting intracranial AVS (reviewer 1, 97.3%, 94.7%; reviewer 2, 100%, 100%, respectively). Interrater agreement on the angioarchitectural features of intracranial AVS on CS-MRA and PI-MRA was moderate to good. CONCLUSION: The diagnostic performance of CS-TOF-MRA is comparable to that of PI-TOF-MRA in detecting and classifying AVS with a reduced scan time under 2.5 min.


Assuntos
Fístula Arteriovenosa , Angiografia por Ressonância Magnética , Angiografia Digital , Humanos , Próteses e Implantes , Sensibilidade e Especificidade
11.
Magn Reson Med ; 84(4): 1881-1894, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32176826

RESUMO

PURPOSE: MP2RAGE T1 -weighted imaging has been shown to be beneficial for various applications, mainly because of its good grey-white matter contrast, its B1 -robustness and ability to derive T1 maps. Even using parallel imaging, the method requires long acquisition times, especially at high resolution. This work aims at accelerating MP2RAGE imaging using compressed sensing. METHODS: A pseudo-phyllotactic Cartesian MP2RAGE readout was implemented allowing for flexible reordering and undersampling factors. The sampling pattern was first optimized based on fully sampled data and a compressed sensing reconstruction. Changes in contrast ratios, automated brain segmentation results, and quantitative T1 values were used for benchmarking. In vivo undersampled data from eleven healthy subjects were then acquired using a 4-fold acceleration with the optimized sampling pattern. The resulting images were compared to the standard parallel imaging MP2RAGE protocol by visual inspection and using the above quality metrics. RESULTS: The application of incoherent undersampling and iterative compressed sensing reconstruction on MP2RAGE acquisitions allows for a 57% time reduction (corresponding to 4-fold undersampling with maintained reference lines, TA = 3:35 minutes) compared to the reference protocol using parallel imaging (GRAPPAx3 acceleration, TA = 8:22 minutes) while obtaining images with similar image quality, morphometric (volume differences = [0.07 ± 1.2-3.8 ± 1.9]%) and T1 -mapping outcomes (T1 error = [6 ± 5.1-37 ± 12.3] ms depending on the different structures). CONCLUSION: A whole-brain MP2RAGE acquisition is feasible with compressed sensing in less than 4 minutes without appreciably compromising image quality.


Assuntos
Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética
12.
Magn Reson Med ; 84(6): 3103-3116, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32530064

RESUMO

PURPOSE: To implement and evaluate a pseudorandom undersampling scheme for combined simultaneous multislice (SMS) balanced SSFP (bSSFP) and compressed-sensing (CS) reconstruction to enable myocardial perfusion imaging with high spatial resolution and coverage at 1.5 T. METHODS: A prospective pseudorandom undersampling scheme that is compatible with SMS-bSSFP phase-cycling requirements and CS was developed. The SMS-bSSFP CS with pseudorandom and linear undersampling schemes were compared in a phantom. A high-resolution (1.4 × 1.4 mm2 ) six-slice SMS-bSSFP CS perfusion sequence was compared with a conventional (1.9 × 1.9 mm2 ) three-slice sequence in 10 patients. Qualitative assessment of image quality, perceived SNR, and number of diagnostic segments and quantitative measurements of sharpness, upslope index, and contrast ratio were performed. RESULTS: In phantom experiments, pseudorandom undersampling resulted in residual artifact (RMS error) reduction by a factor of 7 compared with linear undersampling. In vivo, the proposed sequence demonstrated higher perceived SNR (2.9 ± 0.3 vs. 2.2 ± 0.6, P = .04), improved sharpness (0.35 ± 0.03 vs. 0.32 ± 0.05, P = .01), and a higher number of diagnostic segments (100% vs. 94%, P = .03) compared with the conventional sequence. There were no significant differences between the sequences in terms of image quality (2.5 ± 0.4 vs. 2.8 ± 0.2, P = .08), upslope index (0.11 ± 0.02 vs. 0.10 ± 0.01, P = .3), or contrast ratio (3.28 ± 0.35 vs. 3.36 ± 0.43, P = .7). CONCLUSION: A pseudorandom k-space undersampling compatible with SMS-bSSFP and CS reconstruction has been developed and enables cardiac MR perfusion imaging with increased spatial resolution and myocardial coverage, increased number of diagnostic segments and perceived SNR, and no difference in image quality, upslope index, and contrast ratio.


Assuntos
Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio , Artefatos , Humanos , Processamento de Imagem Assistida por Computador , Perfusão , Estudos Prospectivos
13.
Eur Radiol ; 30(6): 3059-3065, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32064562

RESUMO

INTRODUCTION: We aimed to investigate the utility of compressed sensing time-of-flight magnetic resonance angiography (CS TOF-MRA) for diagnosing intracranial and cervical arterial stenosis by using digital subtraction angiography (DSA) as the reference standard. METHODS: Thirty-seven patients with head and neck arterial stenoses who underwent CS TOF-MRA and DSA were retrospectively enrolled. The reconstructed resolution of CS TOF-MRA was 0.4 × 0.4 × 0.4 mm3. The scan time was 5 min and 2 s. The image quality of CS TOF-MRA was independently ranked by two neuroradiologists in 1031 arterial segments. The luminal stenosis grades on CS TOF-MRA and DSA were analyzed in 61 arterial segments and were compared using the Wilcoxon signed-rank test. The ability of CS TOF-MRA to predict moderate to severe stenosis or occlusion was analyzed. RESULTS: The image quality of most arterial segments (95.2%) on CS TOF-MRA was excellent. Arterial segments with low image quality were mainly the V3-4 segments of the vertebral artery. The majority of arterial stenoses (62.3%) were located in the cervical internal carotid artery. The luminal stenosis grades of CS TOF-MRA were concordant with that of DSA in 50 of 61 segments (p = 0.366). CS TOF-MRA had a sensitivity of 84.4% and a specificity of 88.5% for predicting moderate to severe stenosis. For detecting occlusion lesions, it had a sensitivity of 100% and a specificity of 94.1%. CONCLUSION: CS TOF-MRA provides adequate image quality within a reasonable acquisition time and is a reliable tool for diagnosing head and neck arterial steno-occlusive disease. KEY POINTS: • CS TOF-MRA provides a relatively large coverage (16 cm), high resolution (0.4 × 0.4 × 0.4 mm3) and good image quality of head and neck arteries within 5 min and 2 s. • The diagnostic accuracy of CS TOF-MRA in the assessment of moderate to severe stenosis and occlusion was comparable with that of DSA. • Arterial segments with low image quality were mainly the V3 and V4 segments of the vertebral artery.


Assuntos
Angiografia Digital/métodos , Arteriopatias Oclusivas/diagnóstico , Artéria Carótida Interna/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Artéria Vertebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos
14.
Eur Radiol ; 30(1): 609-619, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31372784

RESUMO

OBJECTIVES: This study was conducted in order to evaluate the accuracy of a compressed sensing (CS) real-time single-breath-hold cine sequence for the assessment of left and right ventricular functional parameters in daily practice. METHODS: Cardiac magnetic resonance (CMR) cine images were acquired from 100 consecutive patients using both the reference segmented multi-breath-hold steady-state free precession (SSFP) acquisition and a prototype single-breath-hold real-time CS sequence, providing the same slice number, position, and thickness. For both sequences, the left (LV) and right ventricular (RV) ejection fractions (EF) and end-diastolic volumes (EDV) were assessed as well as LV mass (LVM). The visualization of wall-motion disorders (WMD) and signal void related to mitral or tricuspid regurgitation was also analyzed. RESULTS: The CS sequence mean scan time was 23 ± 6 versus 510 ± 109 s for the multi-breath-hold SSFP sequence (p < 0.001). There was an excellent correlation between the two sequences regarding mean LVEF (r = 0.995), LVEDV (r = 0.997), LVM (r = 0.981), RVEF (r = 0.979), and RVEDV (r = 0.983). Moreover, inter- and intraobserver agreements were very strong with intraclass correlations of 0.96 and 0.99, respectively. On CS images, mitral or tricuspid regurgitation visualization was good (AUC = 0.85 and 0.81, respectively; ROC curve analysis) and wall-motion disorder visualization was excellent (AUC ≥ 0.97). CONCLUSION: CS real-time single-breath-hold cine imaging reduces CMR scan duration by almost 20 times in daily practice while providing reliable measurements of both left and right ventricles. There was no clinically relevant information loss regarding valve regurgitation and wall-motion disorder depiction. KEY POINTS: • Compressed sensing single-breath-hold real-time cine imaging is a reliable sequence in daily practice. • Fast CS real-time imaging reduces CMR scan time and improves patient workflow. • There is no clinically relevant information loss with CS regarding heart valve regurgitation or wall-motion disorders.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Disfunção Ventricular/diagnóstico por imagem , Disfunção Ventricular/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Suspensão da Respiração , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes , Volume Sistólico , Disfunção Ventricular/patologia , Adulto Jovem
15.
J Cardiovasc Magn Reson ; 22(1): 53, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32684167

RESUMO

BACKGROUND: Conventional 2D inversion recovery (IR) and phase sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) have been widely incorporated into routine CMR for the assessment of myocardial viability. However, reliable suppression of fat signal, and increased isotropic spatial resolution and volumetric coverage within a clinically feasible scan time remain a challenge. In order to address these challenges, this work proposes a highly efficient respiratory motion-corrected 3D whole-heart water/fat LGE imaging framework. METHODS: An accelerated IR-prepared 3D dual-echo acquisition and motion-corrected reconstruction framework for whole-heart water/fat LGE imaging was developed. The acquisition sequence includes 2D image navigators (iNAV), which are used to track the respiratory motion of the heart and enable 100% scan efficiency. Non-rigid motion information estimated from the 2D iNAVs and from the data itself is integrated into a high-dimensional patch-based undersampled reconstruction technique (HD-PROST), to produce high-resolution water/fat 3D LGE images. A cohort of 20 patients with known or suspected cardiovascular disease was scanned with the proposed 3D water/fat LGE approach. 3D water LGE images were compared to conventional breath-held 2D LGE images (2-chamber, 4-chamber and stack of short-axis views) in terms of image quality (1: full diagnostic to 4: non-diagnostic) and presence of LGE findings. RESULTS: Image quality was considered diagnostic in 18/20 datasets for both 2D and 3D LGE magnitude images, with comparable image quality scores (2D: 2.05 ± 0.72, 3D: 1.88 ± 0.90, p-value = 0.62) and overall agreement in LGE findings. Acquisition time for isotropic high-resolution (1.3mm3) water/fat LGE images was 8.0 ± 1.4 min (3-fold acceleration, 60-88 slices covering the whole heart), while 2D LGE images were acquired in 5.6 ± 2.2 min (12-18 slices, including pauses between breath-holds) albeit with a lower spatial resolution (1.40-1.75 mm in-plane × 8 mm slice thickness). CONCLUSION: A novel framework for motion-corrected whole-heart 3D water/fat LGE imaging has been introduced. The method was validated in patients with known or suspected cardiovascular disease, showing good agreement with conventional breath-held 2D LGE imaging, but offering higher spatial resolution, improved volumetric coverage and good image quality from a free-breathing acquisition with 100% scan efficiency and predictable scan time.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Adiposidade , Água Corporal/química , Doenças Cardiovasculares/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Coração/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Compostos Organometálicos/administração & dosagem , Tecido Adiposo/fisiopatologia , Adulto , Idoso , Suspensão da Respiração , Técnicas de Imagem de Sincronização Cardíaca , Doenças Cardiovasculares/fisiopatologia , Eletrocardiografia , Feminino , Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
16.
J Cardiovasc Magn Reson ; 22(1): 15, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32050982

RESUMO

BACKGROUND: Coronary magnetic resonance angiography (CMRA) is a promising technique for assessing the coronary arteries. However, a disadvantage of CMRA is the comparatively long acquisition time. Compressed sensing (CS) can considerably reduce the scan time. The aim of this study was to verify the feasibility of CS CMRA scanning during the waiting time between contrast injection and late gadolinium enhancement (LGE) scan in a clinical protocol. METHODS: Fifty clinical patients underwent contrast-enhanced CS CMRA and conventional CMRA on a 3 T CMR scanner. After contrast injection, CS CMRA was scanned during the waiting time for LGE CMR. A conventional CMRA scan was performed after LGE CMR. We assessed acquisition times and coronary artery image quality for each segment on a 4-point scale. Visible vessel length, sharpness and diameter of right (RCA), left anterior descending (LAD), and left circumflex (LCX) coronary arteries were also quantitatively compared among the scans. RESULTS: All CS CMRA scans were successfully performed within the LGE waiting time. The median total scan time was 207 s (163, 259 s) for CS and 785 s (698, 975 s) for conventional CMRA (p < 0.001). No significant differences were observed in image quality scores, vessel length measurements, sharpness, and diameter between CS and conventional CMRA. CONCLUSIONS: We could achieve all CS CMRA scans within the LGE waiting time. Contrast-enhanced CS CMRA could considerably shorten the scan time while maintaining image quality compared with conventional CMRA.


Assuntos
Meios de Contraste/administração & dosagem , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Angiografia por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Compostos Organometálicos/administração & dosagem , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Fatores de Tempo , Fluxo de Trabalho
17.
Magn Reson Med ; 81(6): 3675-3690, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30803006

RESUMO

PURPOSE: To evaluate the accuracy and feasibility of a free-breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. METHODS: The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4-14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS-accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. RESULTS: CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel-by-voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax ) and peak flow (Qmax ) in both volunteers and patients (volunteers: vmax , -16.2% to -9.4%, Qmax : -11.6% to -2.9%, patients: vmax , -11.2% to -4.0%; Qmax , -10.2% to -5.8%). CONCLUSION: Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax ; however, these were generally within 13% of conventional 4D flow-derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.


Assuntos
Aorta/diagnóstico por imagem , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Adulto , Aorta/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/fisiopatologia , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Adulto Jovem
18.
J Cardiovasc Magn Reson ; 21(1): 66, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660983

RESUMO

BACKGROUND: 3D non-contrast high-resolution black-blood cardiovascular magnetic resonance (CMR) (DANTE-SPACE) has been used for surveillance of abdominal aortic aneurysm (AAA) and validated against computed tomography (CT) angiography. However, it requires a long scan time of more than 7 min. We sought to develop an accelerated sequence applying compressed sensing (CS-DANTE-SPACE) and validate it in AAA patients undergoing surveillance. METHODS: Thirty-eight AAA patients (all males, 73 ± 6 years) under clinical surveillance were recruited for this study. All patients were scanned with DANTE-SPACE (scan time 7:10 min) and CS-DANTE-SPACE (scan time 4:12 min, a reduction of 41.4%). Nine 9 patients were scanned more than 2 times. In total, 50 pairs of images were available for comparison. Two radiologists independently evaluated the image quality on a 1-4 scale, and measured the maximal diameter of AAA, the intra-luminal thrombus (ILT) and lumen area, ILT-to-muscle signal intensity ratio, and the ILT-to-lumen contrast ratio. The sharpness of the aneurysm inner/outer boundaries was quantified. RESULTS: CS-DANTE-SPACE achieved comparable image quality compared with DANTE-SPACE (3.15 ± 0.67 vs. 3.03 ± 0.64, p = 0.06). There was excellent agreement between results from the two sequences for diameter/area and ILT ratio measurements (ICCs> 0.85), and for quantifying growth rate (3.3 ± 3.1 vs. 3.3 ± 3.4 mm/year, ICC = 0.95.) CS-DANTE-SPACE showed a higher ILT-to-lumen contrast ratio (p = 0.01) and higher sharpness than DANTE-SPACE (p = 0.002). Both sequences had excellent inter-reader reproducibility for quantitative measurements (ICC > 0.88). CONCLUSION: CS-DANTE-SPACE can reduce scan time while maintaining image quality for AAA imaging. It is a promising tool for the surveillance of patients with AAA disease in the clinical setting.


Assuntos
Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Idoso , Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/fisiopatologia , Humanos , Masculino , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo , Fluxo de Trabalho
19.
J Cardiovasc Magn Reson ; 20(1): 84, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526627

RESUMO

BACKGROUND: Simultaneous-Multi-Slice (SMS) perfusion imaging has the potential to acquire multiple slices, increasing myocardial coverage without sacrificing in-plane spatial resolution. To maximise signal-to-noise ratio (SNR), SMS can be combined with a balanced steady state free precession (bSSFP) readout. Furthermore, application of gradient-controlled local Larmor adjustment (GC-LOLA) can ensure robustness against off-resonance artifacts and SNR loss can be mitigated by applying iterative reconstruction with spatial and temporal regularisation. The objective of this study was to compare cardiovascular magnetic resonance (CMR) myocardial perfusion imaging using SMS bSSFP imaging with GC-LOLA and iterative reconstruction to 3 slice bSSFP. METHODS: Two contrast-enhanced rest perfusion sequences were acquired in random order in 8 patients: 6-slice SMS bSSFP and 3 slice bSSFP. All images were reconstructed with TGRAPPA. SMS images were also reconstructed using a non-linear iterative reconstruction with L1 regularisation in wavelet space (SMS-iter) with 7 different combinations for spatial (λσ) and temporal (λτ) regularisation parameters. Qualitative ratings of overall image quality (0 = poor image quality, 1 = major artifact, 2 = minor artifact, 3 = excellent), perceived SNR (0 = poor SNR, 1 = major noise, 2 = minor noise, 3 = high SNR), frequency of sequence related artifacts and patient related artifacts were undertaken. Quantitative analysis of contrast ratio (CR) and percentage of dark rim artifact (DRA) was performed. RESULTS: Among all SMS-iter reconstructions, SMS-iter 6 (λσ 0.001 λτ 0.005) was identified as the optimal reconstruction with the highest overall image quality, least sequence related artifact and higher perceived SNR. SMS-iter 6 had superior overall image quality (2.50 ± 0.53 vs 1.50 ± 0.53, p = 0.005) and perceived SNR (2.25 ± 0.46 vs 0.75 ± 0.46, p = 0.010) compared to 3 slice bSSFP. There were no significant differences in sequence related artifact, CR (3.62 ± 0.39 vs 3.66 ± 0.65, p = 0.88) or percentage of DRA (5.25 ± 6.56 vs 4.25 ± 4.30, p = 0.64) with SMS-iter 6 compared to 3 slice bSSFP. CONCLUSIONS: SMS bSSFP with GC-LOLA and iterative reconstruction improved image quality compared to a 3 slice bSSFP with doubled spatial coverage and preserved in-plane spatial resolution. Future evaluation in patients with coronary artery disease is warranted.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Adulto , Idoso , Cardiomiopatias/fisiopatologia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
20.
MAGMA ; 31(3): 399-414, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29372469

RESUMO

OBJECTIVE: Our aim was to develop and validate a 3D Cartesian Look-Locker [Formula: see text] mapping technique that achieves high accuracy and whole-liver coverage within a single breath-hold. MATERIALS AND METHODS: The proposed method combines sparse Cartesian sampling based on a spatiotemporally incoherent Poisson pattern and k-space segmentation, dedicated for high-temporal-resolution imaging. This combination allows capturing tissue with short relaxation times with volumetric coverage. A joint reconstruction of the 3D + inversion time (TI) data via compressed sensing exploits the spatiotemporal sparsity and ensures consistent quality for the subsequent multistep [Formula: see text] mapping. Data from the National Institute of Standards and Technology (NIST) phantom and 11 volunteers, along with reference 2D Look-Locker acquisitions, are used for validation. 2D and 3D methods are compared based on [Formula: see text] values in different abdominal tissues at 1.5 and 3 T. RESULTS: [Formula: see text] maps obtained from the proposed 3D method compare favorably with those from the 2D reference and additionally allow for reformatting or volumetric analysis. Excellent agreement is shown in phantom [bias[Formula: see text] < 2%, bias[Formula: see text] < 5% for (120; 2000) ms] and volunteer data (3D and 2D deviation < 4% for liver, muscle, and spleen) for clinically acceptable scan (20 s) and reconstruction times (< 4 min). CONCLUSION: Whole-liver [Formula: see text] mapping with high accuracy and precision is feasible in one breath-hold using spatiotemporally incoherent, sparse 3D Cartesian sampling.


Assuntos
Suspensão da Respiração , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Abdome , Adulto , Idoso , Algoritmos , Calibragem , Feminino , Voluntários Saudáveis , Humanos , Aumento da Imagem , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Imagens de Fantasmas , Distribuição de Poisson , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA