Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(10): 3297-3304, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35235337

RESUMO

Mesoporous inorganic thin films are promising materials architectures for a variety of high-value applications, ranging from optical coatings and purification membranes to sensing and energy storage devices. Having precise control over the structural parameters of the porous network is crucial for broadening their applicability. To this end, the use of block copolymers (BCP) as sacrificial structure-directing agents via micelle coassembly is a particularly attractive route, since the resultant pore size is directly related to scaling laws for the radius of gyration of the pore-forming macromolecule. However, tailoring the molecular weight of the BCP via bespoke synthesis is an elaborate process that requires precise control over highly sensitive reactions conditions. Alternative methods have emerged, based on supramolecular assembly or the addition of different swelling agents. Nevertheleses, to date, these present a negative impact on the structural order and pore size dispersity of the final inorganic mesoporous films. In this work, we propose a novel and effective method for control over pore size, porosity, and structural order, which relies on a synergistic combination of BCP selective swelling via solvent vapor annealing (SVA) and locking of the structure by condensation of the inorganic sol-gel precursors. The results obtained in this work for TiO2 establish SVA as a new, straightforward, simple, and powerful route for the fabrication of mesoporous thin-film materials with controllable structural characteristics.

2.
ACS Omega ; 8(23): 20404-20411, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37323413

RESUMO

Porous polymeric microspheres are an emerging class of materials, offering stimuli-responsive cargo uptake and release. Herein, we describe a new approach to fabricate porous microspheres based on temperature-induced droplet formation and light-induced polymerization. Microparticles were prepared by exploiting the partial miscibility of a thermotropic liquid crystal (LC) mixture composed of 4-cyano-4'-pentylbiphenyl (5CB, unreactive mesogens) with 2-methyl-1,4-phenylene bis4-[3-(acryloyloxy)propoxy] benzoate (RM257, reactive mesogens) in methanol (MeOH). Isotropic 5CB/RM257-rich droplets were generated by cooling below the binodal curve (20 °C), and the isotropic-to-nematic transition occurred after cooling below 0 °C. The resulting 5CB/RM257-rich droplets with radial configuration were subsequently polymerized under UV light, resulting in nematic microparticles. Upon heating the mixture, the 5CB mesogens underwent a nematic-isotropic transition and eventually became homogeneous with MeOH, while the polymerized RM257 preserved its radial configuration. Repeated cycles of cooling and heating resulted in swelling and shrinking of the porous microparticles. The use of a reversible materials templating approach to obtain porous microparticles provides new insights into binary liquid manipulation and potential for microparticle production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA