Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 565(7741): 581-586, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700868

RESUMO

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

2.
Phys Rev Lett ; 131(10): 105101, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739360

RESUMO

In direct-drive inertial confinement fusion, the laser bandwidth reduces the laser imprinting seed of hydrodynamic instabilities. The impact of varying bandwidth on the performance of direct-drive DT-layered implosions was studied in targets with different hydrodynamic stability properties. The stability was controlled by changing the shell adiabat from (α_{F}≃5) (more stable) to (α_{F}≃3.5) (less stable). These experiments show that the performance of lower adiabat implosions improves considerably as the bandwidth is raised indicating that further bandwidth increases, beyond the current capabilities of OMEGA, would be greatly beneficial. These results suggest that the future generation of ultra-broadband lasers could enable achieving high convergence and possibly high gains in direct drive ICF.

3.
Phys Rev Lett ; 129(9): 095001, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083671

RESUMO

Spherical implosions in inertial confinement fusion are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelength) perturbations is a key milestone to improving implosion performances. We present the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with an inline package for polarized crossed-beam energy transfer. Simulations match bang times, yields (separately accounting for laser-induced high modes and fuel age), hot spot flow velocities and direction, for which polarized crossed-beam energy transfer contributes to the systematic flow orientation evident in the OMEGA implosion database. Current levels of beam mispointing, imbalance, target offset, and asymmetry from polarized crossed-beam energy transfer degrade yields by more than 40%. The effectiveness of two mitigation strategies for low modes is explored.

4.
Phys Rev Lett ; 127(5): 055001, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397224

RESUMO

Hot electrons generated by laser-plasma instabilities degrade the performance of laser-fusion implosions by preheating the DT fuel and reducing core compression. The hot-electron energy deposition in the DT fuel has been directly measured for the first time by comparing the hard x-ray signals between DT-layered and mass-equivalent ablator-only implosions. The electron energy deposition profile in the fuel is inferred through dedicated experiments using Cu-doped payloads of varying thickness. The measured preheat energy accurately explains the areal-density degradation observed in many OMEGA implosions. This technique can be used to assess the viability of the direct-drive approach to laser fusion with respect to the scaling of hot-electron preheat with laser energy.

5.
Phys Rev Lett ; 125(21): 215001, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274978

RESUMO

Energy flow and balance in convergent systems beyond petapascal energy densities controls the fate of late-stage stars and the potential for controlling thermonuclear inertial fusion ignition. Time-resolved x-ray self-emission imaging combined with a Bayesian inference analysis is used to describe the energy flow and the potential information stored in the rebounding spherical shock at 0.22 PPa (2.2 Gbar or billions of atmospheres pressure). This analysis, together with a simple mechanical model, describes the trajectory of the shell and the time history of the pressure at the fuel-shell interface, ablation pressure, and energy partitioning including kinetic energy of the shell and internal energy of the fuel. The techniques used here provide a fully self-consistent uncertainty analysis of integrated implosion data, a thermodynamic-path independent measurement of pressure in the petapascal range, and can be used to deduce the energy flow in a wide variety of implosion systems to petapascal energy densities.

6.
Phys Rev Lett ; 122(3): 035001, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735406

RESUMO

Fuel-ion species dynamics in hydrodynamiclike shock-driven DT^{3}He-filled inertial confinement fusion implosion is quantitatively assessed for the first time using simultaneously measured D^{3}He and DT reaction histories. These reaction histories are measured with the particle x-ray temporal diagnostic, which captures the relative timing between different nuclear burns with unprecedented precision (∼10 ps). The observed 50±10 ps earlier D^{3}He reaction history timing (relative to DT) cannot be explained by average-ion hydrodynamic simulations and is attributed to fuel-ion species separation between the D, T, and ^{3}He ions during shock convergence and rebound. At the onset of the shock burn, inferred ^{3}He/T fuel ratio in the burn region using the measured reaction histories is much higher as compared to the initial gas-filled ratio. As T and ^{3}He have the same mass but different charge, these results indicate that the charge-to-mass ratio plays an important role in driving fuel-ion species separation during strong shock propagation even for these hydrodynamiclike plasmas.

7.
Phys Rev Lett ; 121(4): 042501, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095940

RESUMO

Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E_{c.m.}) from 16 to 50 keV. A clear difference in the shape of the TT-neutron spectrum is observed between the two E_{c.m.}, with the ^{5}He ground state resonant peak at 8.6 MeV being significantly stronger at the higher than at the lower energy. The data provide the first conclusive evidence of a variant TT-neutron spectrum in this E_{c.m.} range. In contrast to earlier available data, this indicates a reaction mechanism that must involve resonances and/or higher angular momenta than L=0. This finding provides an important experimental constraint on theoretical efforts that explore this and complementary six-nucleon systems, such as the solar ^{3}He(^{3}He,2p)α reaction.

8.
Phys Rev Lett ; 118(9): 095002, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306316

RESUMO

The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

10.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447511

RESUMO

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

11.
Phys Rev E ; 109(6-2): 065201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020911

RESUMO

Shock-driven implosions with 100% deuterium (D_{2}) gas fill compared to implosions with 50:50 nitrogen-deuterium (N_{2}D_{2}) gas fill have been performed at the OMEGA laser facility to test the impact of the added mid-Z fill gas on implosion performance. Ion temperature (T_{ion}) as inferred from the width of measured DD-neutron spectra is seen to be 34%±6% higher for the N_{2}D_{2} implosions than for the D_{2}-only case, while the DD-neutron yield from the D_{2}-only implosion is 7.2±0.5 times higher than from the N_{2}D_{2} gas fill. The T_{ion} enhancement for N_{2}D_{2} is observed in spite of the higher Z, which might be expected to lead to higher radiative loss, and higher shock strength for the D_{2}-only versus N_{2}D_{2} implosions due to lower mass, and is understood in terms of increased shock heating of N compared to D, heat transfer from N to D prior to burn, and limited amount of ion-electron-equilibration-mediated additional radiative loss due to the added higher-Z material. This picture is supported by interspecies equilibration timescales for these implosions, constrained by experimental observables. The one-dimensional (1D) kinetic Vlasov-Fokker-Planck code ifp and the radiation hydrodynamic simulation codes hyades (1D) and xrage [1D, two-dimensional (2D)] are brought to bear to understand the observed yield ratio. Comparing measurements and simulations, the yield loss in the N_{2}D_{2} implosions relative to the pure D_{2}-fill implosion is determined to result from the reduced amount of D_{2} in the fill (fourfold effect on yield) combined with a lower fraction of the D_{2} fuel being hot enough to burn in the N_{2}D_{2} case. The experimental yield and T_{ion} ratio observations are relatively well matched by the kinetic simulations, which suggest interspecies diffusion is responsible for the lower fraction of hot D_{2} in the N_{2}D_{2} relative to the D_{2}-only case. The simulated absolute yields are higher than measured; a comparison of 1D versus 2D xrage simulations suggest that this can be explained by dimensional effects. The hydrodynamic simulations suggest that radiative losses primarily impact the implosion edges, with ion-electron equilibration times being too long in the implosion cores. The observations of increased T_{ion} and limited additional yield loss (on top of the fourfold expected from the difference in D content) for the N_{2}D_{2} versus D_{2}-only fill suggest it is feasible to develop the platform for studying CNO-cycle-relevant nuclear reactions in a plasma environment.

12.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862497

RESUMO

Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision. We present a contextual review of the current state of the art in nToF detectors at ICF facilities in the United States, outlining the physics that can be measured, the detector technologies currently deployed and analysis techniques used.

13.
Phys Rev E ; 108(3-2): 035201, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849093

RESUMO

The ion velocity distribution functions of thermonuclear plasmas generated by spherical laser direct drive implosions are studied using deuterium-tritium (DT) and deuterium-deuterium (DD) fusion neutron energy spectrum measurements. A hydrodynamic Maxwellian plasma model accurately describes measurements made from lower temperature (<10 keV), hydrodynamiclike plasmas, but is insufficient to describe measurements made from higher temperature more kineticlike plasmas. The high temperature measurements are more consistent with Vlasov-Fokker-Planck (VFP) simulation results which predict the presence of a bimodal plasma ion velocity distribution near peak neutron production. These measurements provide direct experimental evidence of non-Maxwellian ion velocity distributions in spherical shock driven implosions and provide useful data for benchmarking kinetic VFP simulations.

14.
Phys Rev E ; 105(5-2): 055205, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706215

RESUMO

The apparent ion temperature and mean velocity of the dense deuterium tritium fuel layer of an inertial confinement fusion target near peak compression have been measured using backscatter neutron spectroscopy. The average isotropic residual kinetic energy of the dense deuterium tritium fuel is estimated using the mean velocity measurement to be ∼103 J across an ensemble of experiments. The apparent ion-temperature measurements from high-implosion velocity experiments are larger than expected from radiation-hydrodynamic simulations and are consistent with enhanced levels of shell decompression. These results suggest that high-mode instabilities may saturate the scaling of implosion performance with the implosion velocity for laser-direct-drive implosions.

15.
Rev Sci Instrum ; 93(9): 093522, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182446

RESUMO

A new neutron time-of-flight (nTOF) detector for deuterium-deuterium (DD)-fusion yield and ion-temperature measurements was designed, installed, and calibrated for the OMEGA Laser Facility. This detector provides an additional line of sight for DD neutron yield and ion-temperature measurements for yields exceeding 1 × 1010 with higher precision than existing detectors. The nTOF detector consists of a 90-mm-diam, 20-mm-thick BC-422 scintillator and a gated Photek photomultiplier tube (PMT240). The PMT collects scintillating light through the 20-mm side of the scintillator without the use of a light guide. There is no lead shielding from hard x rays in order to allow the x-ray instrument response function of the detector to be measured easily. Instead, hard x-ray signals generated in implosion experiments are gated out by the PMT. The design provides a place for glass neutral-density filters between the scintillator and the PMT to avoid PMT saturation at high yields. The nTOF detector is installed in the OMEGA Target Bay along the P8A sub-port line of sight at a distance of 5.3 m from the target chamber center. In addition to DD measurements, the same detector can be used to measure the neutron yield and ion temperature from deuterium-tritium (DT) implosion targets in the 5 × 1010 to 2 × 1012 yield range. The design details and the calibration results of this nTOF detector for both D2 and DT implosions on OMEGA will be presented.

16.
Rev Sci Instrum ; 93(10): 103505, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319371

RESUMO

Areal density is one of the key parameters that determines the confinement time in inertial confinement fusion experiments, and low-mode asymmetries in the compressed fuel are detrimental to the implosion performance. The energy spectra from the scattering of the primary deuterium-tritium (DT) neutrons off the compressed cold fuel assembly are used to investigate low-mode nonuniformities in direct-drive cryogenic DT implosions at the Omega Laser Facility. For spherically symmetric implosions, the shape of the energy spectrum is primarily determined by the elastic and inelastic scattering cross sections for both neutron-deuterium and neutron-tritium kinematic interactions. Two highly collimated lines of sight, which are positioned at nearly orthogonal locations around the OMEGA target chamber, record the neutron time-of-flight signal in the current mode. An evolutionary algorithm is being used to extract a model-independent energy spectrum of the scattered neutrons from the experimental neutron time-of-flight data and is used to infer the modal spatial variations (l = 1) in the areal density. Experimental observations of the low-mode variations of the cold-fuel assembly (ρL0 + ρL1) show good agreement with a recently developed model, indicating a departure from the spherical symmetry of the compressed DT fuel assembly. Another key signature that has been observed in the presence of a low-mode variation is the broadening of the kinematic end-point due to the anisotropy of the dense fuel conditions.

17.
Phys Rev E ; 106(1): L013201, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974626

RESUMO

In laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration. We apply this model to hot-spot x-ray measurements of direct-drive cryogenic implosions typical of the direct-drive designs with best ignition metrics. The comparison of the measured x-ray and neutron yields indicates that hot-spot mix, if present, is below a sensitivity estimated as ∼2% by-atom mix of ablator plastic into the hot spot.

18.
Rev Sci Instrum ; 92(4): 043546, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243381

RESUMO

Neutron time-of-flight (nTOF) detectors are used to diagnose the conditions present in inertial confinement fusion (ICF) experiments and basic laboratory physics experiments performed on an ICF platform. The instrument response function (IRF) of these detectors is constructed by convolution of two components: an x-ray IRF and a neutron interaction response. The shape of the neutron interaction response varies with incident neutron energy, changing the shape of the total IRF. Analyses of nTOF data that span a broad range of energies must account for this energy-dependence in order to accurately infer plasma parameters and nuclear properties in ICF experiments. This work briefly reviews a matrix multiplication approach to convolution, which allows for an energy-dependent change in the shape of the IRF. This method is applied to synthetic data resembling symmetric cryogenic DT implosions to examine the effect of the energy-dependent IRF on the inferred areal density. The results of forward fits that infer ion temperatures and areal densities from nTOF data collected during cryogenic DT experiments on OMEGA are also discussed.

19.
Rev Sci Instrum ; 92(1): 013509, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514216

RESUMO

A traditional neutron time-of-flight (nTOF) detector used in inertial confinement fusion consists of a scintillator coupled with a photomultiplier tube (PMT). The instrument response function (IRF) of such a detector is dominated by the scintillator-light decay. In DT implosions with neutron yield larger than 1013, a novel detector consisting of a microchannel-plate (MCP) photomultiplier tube in a housing without a scintillator (PMT nTOF) can be used to measure DT yield, ion temperature, and neutron velocity. Most of the neutron signals in PMT nTOF detectors are produced from neutron interaction with a PMT window. The direct interaction of neutrons with the MCP provides negligible contribution. The elimination of the scintillator removes the scintillator decay from the instrument response function and makes the IRF of the PMT nTOF detector faster, which makes the ion temperature and neutron velocity measurements more accurate. Three PMT nTOF detectors were deployed in the OMEGA laser system for the first time to diagnose inertial confinement fusion plasma. The design details, characteristics, and calibration results of these detectors in DT implosions on OMEGA are presented. Recommendations on the use of different PMTs for specific applications are provided.

20.
Phys Rev E ; 103(2-1): 023201, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736107

RESUMO

In deuterium-tritium cryogenic implosions, hot-spot x-ray self-emission is observed to begin at a larger shell radius than is predicted by a one-dimensional radiation-hydrodynamic implosion model. Laser-imprint is shown to explain the observation for a low-adiabat implosion. For more-stable implosions the data are not described by the imprint model and suggest there are additional sources of decompression of the dense fuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA