RESUMO
Human mesenchymal stem/progenitor cells (hMSCs) from bone marrow and other tissues are currently being administered to large numbers of patients even though there are no biomarkers that accurately predict their efficacy in vivo. Using a mouse model of chemical injury of the cornea, we found that bone-marrow-derived hMSCs isolated from different donors varied widely in their efficacy in modulating sterile inflammation. Importantly, RT-PCR assays of hMSCs for the inflammation-modulating protein TSG-6 expressed by the TNFα-stimulated gene 6 (TSG-6 or TNFAIP6) predicted their efficacy in sterile inflammation models for corneal injury, sterile peritonitis, and bleomycin-induced lung injury. In contrast, the levels of TSG-6 mRNA were negatively correlated with their potential for osteogenic differentiation in vitro and poorly correlated with other criteria for evaluating hMSCs. Also, a survey of a small cohort suggested that hMSCs from female donors compared with male donors more effectively suppressed sterile inflammation, expressed higher levels of TSG-6, and had slightly less osteogenic potential.
Assuntos
Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/citologia , Animais , Moléculas de Adesão Celular/genética , Feminino , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Previous reports demonstrated that bleomycin-induced injury of lungs in mice can be improved by the administration of murine multipotent adult stem/progenitor cells (MSCs) from the bone marrow. Recently some of the beneficial effects of MSCs have been explained by the cells being activated by signals from injured tissues to express the inflammation modulating protein TNF-α-stimulated gene/protein 6 (TSG-6). In this study, we elected to test the hypothesis that targeting the early phase of bleomycin-induced lung injury with systemic TSG-6 administration may produce therapeutic effects such as preventing the deterioration of lung function and increasing survival by modulation of the inflammatory cascade. Lung injury in C57Bl/6J mice was induced by intratracheal administration of bleomycin. Mice then received intravenous injections of TSG-6 or sham controls. Pulse oximetry was used to monitor changes in lung function. Cell infiltration was evaluated by flow cytometry, cytokine expression was measured by ELISA assays, and lungs were assessed for histological attributes. The results demonstrated that intravenous infusion of TSG-6 during the early inflammatory phase decreased cellular infiltration into alveolar spaces. Most importantly, it improved both the subsequent decrease in arterial oxygen saturation levels and the survival of the mice. These findings demonstrated that the beneficial effects of TSG-6 in a model of bleomycin-induced lung injury are largely explained by the protein modulating the early inflammatory phase. Similar phase-directed strategy with TSG-6 or other therapeutic factors that MSCs produce may be useful for other lung diseases and diseases of other organs.
Assuntos
Moléculas de Adesão Celular/farmacologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/imunologia , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Animais , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Receptores de Hialuronatos/genética , Injeções Intravenosas , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oximetria , Pneumonia/induzido quimicamente , Proteínas Recombinantes/farmacologiaRESUMO
Regulatory mechanisms for angiogenesis are relatively well established compared to lymphangiogenesis. Few studies have shown that a combination of vascular endothelial growth factor VEGF-A/C with hypoxia or collagen matrix promotes lymphatic structures along with blood vessel development in mouse embryoid bodies (EB). In this study we tested the hypothesis that while hypoxia combined with prolonged VEGF-A/C treatment would induce early lymphangiogenesis in addition to angiogenesis in mouse EBs, under similar conditions specific extracellular matrix (ECM) proteins would promote lymphatic vessel-like structures over angiogenesis. EBs were subjected to four conditions and were maintained under normoxia and hypoxia (21% and 2.6% O(2), respectively) with or without VEGF-A/C. Microarray analyses of normoxic and hypoxic EBs, and immunofluorescence data showed very low expression of early lymphatic endothelial cell (LEC) markers, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), and prospero-related homeobox 1 (Prox1) at early time points. Double immunofluorescence using MECA-32 and Prox1/LYVE1 demonstrated that combined hypoxia and VEGF-A/C treatment promoted formation of blood vessel-like structures, whereas only Prox1(+)/LYVE1(+) LECs were detected in EBs at E22.5. Furthermore, EBs were grown on laminin or collagen-I coated plates and were subjected to the four treatments as described above. Results revealed that LECs in EBs at E36.5 attached better to collagen-I, resulting in an organized network of lymphatic vessel-like structures as compared to EBs grown on laminin. However, blood vessel-like structures were less favored under these same conditions. Collectively, our data demonstrate that hypoxia combined with growth factors promotes angiogenesis, whereas combination of these conditions with specific ECM proteins favors lymphangiogenesis processes in mouse EBs.