Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(2): 237-256, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894815

RESUMO

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2 O), a powerful greenhouse gas, and increasing SOC may influence N2 O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2 O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta-analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2 O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non-pyrogenic C amendment application) may even decrease N2 O emissions.


Assuntos
Gases de Efeito Estufa , Solo , Agricultura , Carbono/análise , Óxido Nitroso/análise , Paris
2.
Sci Total Environ ; 581-582: 161-173, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062107

RESUMO

Cryosols contain ~33% of the global soil organic carbon. Cryosol warming and permafrost degradation may enhance the CO2 release to the atmosphere through the microbial decomposition. Despite the large carbon pool, the permafrost carbon feedback on the climate remains uncertain. In this study, we aimed at better understanding the diurnal evolution of the temperature sensitivity of CO2 efflux in Cryosols. A Histic Cryosol and a Turbic Cryosol were instrumented in tussock tundra ecosystems near Salluit (Nunavik, Canada). Open top chambers were installed during summer 2011 and the ground temperature, the soil moisture and meteorological variables were recorded hourly while the ecosystem respiration was measured three times per day every second day with opaque and closed dynamic chambers in control and warm stations. Despite warmer conditions, the average CO2 efflux at the control stations at the Histic site (1.29±0.45µmolCO2m-2s-1) was lower than at the Turbic site (2.30±0.74µmolCO2m-2s-1). The increase in CO2 efflux with warming was greater in the Histic Cryosol (~39%) than in the Turbic Cryosol (~16%). Our study showed that the temperature sensitivity of the ecosystem respiration evolved during the day and decreased with the experimental warming. Both sites exhibited diurnal hysteresis loops between CO2 efflux and the soil surface temperature. The width of hysteresis loops increased with the solar radiation and decreased along the growing season. We developed simple linear models that took into account the diurnal evolution of the temperature sensitivity of CO2 efflux and we estimated the seasonal cumulative carbon release to the atmosphere. The calculation using solely diurnal measurements significantly differed from the seasonal carbon release modelled hourly. Our study highlighted that the time of the day when measurements are performed should be taken into account to accurately estimate the seasonal carbon release from tundra ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA