Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Mol Life Sci ; 78(6): 2911-2927, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33128105

RESUMO

Descending serotonergic (5-HT) projections originating from the raphe nuclei form an important input to the spinal cord that control basic locomotion. The molecular signals that control this projection pattern are currently unknown. Here, we identify Semaphorin7A (Sema7A) as a critical cue that restricts serotonergic innervation in the spinal cord. Sema7A deficient mice show a marked increase in serotonergic fiber density in all layers of the spinal cord while the density of neurons expressing the corresponding 5-HTR2α receptor remains unchanged. These alterations appear to be successfully compensated as no obvious changes in rhythmic locomotion and skilled stepping are observed in adult mice. When the system is challenged with a spinal lesion, serotonergic innervation patterns in both Sema7A-deficient and -competent mice evolve over time with excessive innervation becoming most pronounced in the dorsal horn of Sema7A-deficient mice. These altered serotonergic innervation patterns correlate with diminished functional recovery that predominantly affects rhythmic locomotion. Our findings identify Sema7A as a critical regulator of serotonergic circuit formation in the injured spinal cord.


Assuntos
Antígenos CD/metabolismo , Recuperação de Função Fisiológica , Semaforinas/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Antígenos CD/genética , Comportamento Animal , Modelos Animais de Doenças , Feminino , Locomoção , Masculino , Camundongos , Camundongos Knockout , Semaforinas/deficiência , Semaforinas/genética , Serotonina/metabolismo , Transdução de Sinais , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo
2.
J Neurochem ; 147(2): 240-255, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29808487

RESUMO

In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible, and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning, and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and post-synaptic levels, characterized by a reduction in phosphorylation (synapsin1, α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors (AMPAR) GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of O-GlcNAc transferase/O-GlcNAcase enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect pre-synaptic neurotransmitter release. Associated with other pre- and post-synaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, phosphorylation/O-GlcNAcylation interplay appears to be involved in synaptic plasticity by finely regulating neural activity.


Assuntos
Acetilglucosamina/metabolismo , Imobilização/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Acilação , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Plasticidade Neuronal , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Córtex Somatossensorial/metabolismo , Sinaptossomos/metabolismo
3.
J Exp Med ; 220(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36571760

RESUMO

Functional recovery after incomplete spinal cord injury depends on the effective rewiring of neuronal circuits. Here, we show that selective chemogenetic activation of either corticospinal projection neurons or intraspinal relay neurons alone led to anatomically restricted plasticity and little functional recovery. In contrast, coordinated stimulation of both supraspinal centers and spinal relay stations resulted in marked and circuit-specific enhancement of neuronal rewiring, shortened EMG latencies, and improved locomotor recovery.


Assuntos
Regeneração Nervosa , Traumatismos da Medula Espinal , Humanos , Regeneração Nervosa/fisiologia , Plasticidade Neuronal , Traumatismos da Medula Espinal/terapia , Neurônios/fisiologia , Interneurônios , Recuperação de Função Fisiológica/fisiologia , Medula Espinal
4.
Neural Regen Res ; 17(5): 959-962, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34558508

RESUMO

Serotonin is a monoamine neurotransmitter synthetized in various populations of brainstem neurons. In the spinal cord, descending serotonergic projections regulate postural muscle tone, locomotion and rhythm and coordination of movements via the Central Pattern Generator. Following a spinal cord injury, serotonergic projections to the lumbar spinal cord, where the Central Pattern Generators are located, are interrupted resulting in devastating locomotor impairments and changes in the expression and activation of serotonin and its spinal receptors. The molecular cues that control the precise patterning and targeting of serotonergic inputs onto Central Pattern Generator networks in healthy animals or after injury are still unknown. In our recent research work, we have been particularly interested in Semaphorin7A, which belongs to the Semaphorins family involved in guiding growing axons and controlling plasticity of synaptic connections. In this review, we discuss the role of Semaphorin7A signaling as an important molecular actor that instructs the patterning of serotonin inputs to spinal Central Pattern Generator networks. We show that Semaphorin7A controls the wiring of descending serotonin axons in the spinal cord. Our results reveal that mistargetting of serotonin fibers in the spinal cord is compensated in healthy uninjured Semaphorin7A deficient mice so that their gross locomotion proceeds accurately. We also demonstrate that when the system is challenged with a spinal lesion, the pattern of post-injury serotonin expression is significantly altered in Semaphorin7A deficient mice with specific ectopic targeting of serotonin fibers in the lumbar spinal cord. Compensatory mechanisms in place in uninjured Semaphorin7A deficient mice are lost and injured Semaphorin7A deficient mice exhibit a worsening of their post-injury locomotor abilities. Our findings identify Semaphorin7A as a critical determinant of serotonergic circuit formation in healthy or spinal cord injured mice.

5.
Nat Commun ; 13(1): 2659, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551446

RESUMO

Traumatic brain injury (TBI) results in deficits that are often followed by recovery. The contralesional cortex can contribute to this process but how distinct contralesional neurons and circuits respond to injury remains to be determined. To unravel adaptations in the contralesional cortex, we used chronic in vivo two-photon imaging. We observed a general decrease in spine density with concomitant changes in spine dynamics over time. With retrograde co-labeling techniques, we showed that callosal neurons are uniquely affected by and responsive to TBI. To elucidate circuit connectivity, we used monosynaptic rabies tracing, clearing techniques and histology. We demonstrate that contralesional callosal neurons adapt their input circuitry by strengthening ipsilateral connections from pre-connected areas. Finally, functional in vivo two-photon imaging demonstrates that the restoration of pre-synaptic circuitry parallels the restoration of callosal activity patterns. Taken together our study thus delineates how callosal neurons structurally and functionally adapt following a contralateral murine TBI.


Assuntos
Lesões Encefálicas Traumáticas , Corpo Caloso , Animais , Córtex Cerebral , Corpo Caloso/fisiologia , Camundongos , Neurônios/fisiologia
6.
J Mol Neurosci ; 71(12): 2534-2545, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33835400

RESUMO

Plasticity of the cerebral cortex following a modification of the sensorimotor experience takes place in several steps that can last from few hours to several months. Among the mechanisms involved in the dynamic modulation of the cerebral cortex in adults, it is commonly proposed that short-term plasticity reflects changes in synaptic connections. Here, we were interested in the time-course of synaptic plasticity taking place in the somatosensory primary cortex all along a 14-day period of sensorimotor perturbation (SMP), as well as during a recovery phase up to 24 h. Activation and expression level of pre- (synapsin 1, synaptophysin, synaptotagmin 1) and postsynaptic (AMPA and NMDA receptors) proteins, postsynaptic density scaffold proteins (PSD-95 and Shank2), and cytoskeletal proteins (neurofilaments-L and M, ß3-tubulin, synaptopodin, N-cadherin) were determined in cortical tissue enriched in synaptic proteins. During the SMP period, most changes were observed as soon as D7 in the presynaptic compartment and were followed, at D14, by changes in the postsynaptic compartment. These changes persisted at least until 24 h of recovery. Proteins involved in synapse structure (scaffolding, adhesion, cytoskeletal) were mildly affected and almost exclusively at D14. We concluded that experience-dependent reorganization of somatotopic cortical maps is accompanied by changes in synaptic transmission with a very close time-course.


Assuntos
Plasticidade Neuronal , Córtex Somatossensorial/metabolismo , Sinapses/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Sinapsinas/genética , Sinapsinas/metabolismo , Potenciais Sinápticos , Sinaptofisina/genética , Sinaptofisina/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
7.
J Neurosci Methods ; 343: 108807, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574643

RESUMO

BACKGROUND: Several studies have shown the importance of phosphorylation, O-GlcNAcylation and their interplay in neuronal processes. NEW METHOD: To get understanding about molecular mechanisms of synaptic plasticity, we performed a preparation of synaptic protein-enriched fraction on a small sample of rat sensorimotor cortex. We then optimized a multiplexed proteomic strategy to detect O-GlcNAcylated proteins, phosphoproteins, and the whole proteome within the same bidimensional gel. We compared different protocols (solubilisation buffer, reticulation and composition of the gel, migration buffer) to optimize separating conditions for 2D-gel electrophoresis of synaptic proteins. The O-GlcNAcome was revealed using Click chemistry and the azide-alkyne cycloaddition of a fluorophore on O-GlcNAc moieties. The phosphoproteome was detected by Phospho-Tag staining, while the whole proteome was visualized through SYPRORuby staining. RESULTS: This method permitted, after sequential image acquisition, the direct in-gel detection of O-GlcNAcome, phosphoproteome, and whole proteome of synapse-associated proteins. CONCLUSION: This original method of differential proteomic analysis will permit to identify key markers of synaptic plasticity that are O-GlcNAcylated and/or phosphorylated, and their molecular regulations in neuronal processes.


Assuntos
Proteoma , Córtex Sensório-Motor , Acetilglucosamina , Animais , Glicosilação , Processamento de Proteína Pós-Traducional , Proteômica , Ratos , Sinapses
8.
J Physiol Biochem ; 75(3): 367-377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267382

RESUMO

Hypoxia, occurring in several pathologies, has deleterious effects on skeletal muscle, in particular on protein homeostasis. Different induction methods of hypoxia are commonly used in cellular models to investigate the alterations of muscular function consecutive to hypoxic stress. However, a consensus is not clearly established concerning hypoxia induction methodology. Our aim was to compare oxygen deprivation with chemically induced hypoxia using cobalt chloride (CoCl2) or desferrioxamine (DFO) on C2C12 myotubes which were either cultured in hypoxia chamber at an oxygen level of 4% or treated with CoCl2 or DFO. For each method of hypoxia induction, we determined their impact on muscle cell morphology and on expression or activation status of key signaling proteins of synthesis and degradation pathways. The expression of HIF-1α increased whatever the method of hypoxia induction. Myotube diameter and protein content decreased exclusively for C2C12 myotubes submitted to physiological hypoxia (4% O2) or treated with CoCl2. Results were correlated with a hypophosphorylation of key proteins regulated synthesis pathway (Akt, GSK3-ß and P70S6K). Similarly, the phosphorylation of FoxO1 decreased and the autophagy-related LC3-II was overexpressed with 4% O2 and CoCl2 conditions. Our results demonstrated that in vitro oxygen deprivation and the use of mimetic agent such as CoCl2, unlike DFO, induced similar responses on myotube morphology and atrophy/hypertrophy markers. Thus, physiological hypoxia or its artificial induction using CoCl2 can be used to understand finely the molecular changes in skeletal muscle cells and to evaluate new therapeutics for hypoxia-related muscle disorders.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/patologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos , Oxigênio/metabolismo , Animais , Diferenciação Celular , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular , Cobalto/química , Desferroxamina/química , Homeostase , Mioblastos/citologia , Mioblastos/metabolismo , Transdução de Sinais
9.
Ann Phys Rehabil Med ; 62(2): 122-127, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30394346

RESUMO

Activity-dependent processes addressing the central nervous system (CNS) and musculoskeletal structures are critical for maintaining motor performance. Chronic reduction in activity, whether due to a sedentary lifestyle or extended bed rest, results in impaired performance in motor tasks and thus decreased quality of life. In the first part of this paper, we give a narrative review of the effects of hypoactivity on the neuromuscular system and behavioral outcomes. Motor impairments arise from a combination of factors including altered muscle properties, impaired afferent input, and plastic changes in neural structure and function throughout the nervous system. There is a reciprocal interplay between the CNS and muscle properties, and these sensorimotor loops are essential for controlling posture and movement. As a result, patients under hypoactivity experience a self-perpetuating cycle, in with sedentarity leading to decreased motor activity and thus a progressive worsening of a situation, and finally deconditioning. Various rehabilitation strategies have been studied to slow down or reverse muscle alteration and altered motor performance. In the second part of the paper, we review representative protocols directed toward the muscle, the sensory input and/or the cerebral cortex. Improving an understanding of the loss of motor function under conditions of disuse (such as extended bed rest) as well as identifying means to slow this decline may lead to therapeutic strategies to preserve quality of life for a range of individuals. The most efficient strategies seem multifactorial, using a combination of approaches targeting different levels of the neuromuscular system.


Assuntos
Adaptação Fisiológica/fisiologia , Hipocinesia/fisiopatologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiopatologia , Envelhecimento/fisiologia , Repouso em Cama/efeitos adversos , Humanos , Hipocinesia/etiologia
10.
Behav Brain Res ; 317: 434-443, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27717815

RESUMO

Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity.


Assuntos
Elevação dos Membros Posteriores/efeitos adversos , Fator de Crescimento Insulin-Like I/uso terapêutico , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiologia , Transtornos Motores/tratamento farmacológico , Análise de Variância , Animais , Tornozelo/inervação , Fenômenos Biomecânicos , Sistemas de Liberação de Medicamentos , Membro Anterior/efeitos dos fármacos , Membro Anterior/fisiologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiologia , Quadril/inervação , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Proteínas de Membrana , Transtornos Motores/etiologia , Proteínas de Ligação a Fosfato , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA